Подключение теплового реле к магнитному пускателю 380. Подключение магнитного пускателя с тепловым реле

Магнитный пускатель наиболее часто используется для управления электродвигателями. Хотя есть у него и другие сферы применения: управление освещением, отоплением, коммутация мощных нагрузок. Их включение и отключение может выполняться как вручную, при помощи кнопок управления, так и с применением систем автоматики. О подключении кнопок управления к магнитному пускателю мы и поговорим.

Кнопки управления пускателей

В общем случае потребуется две кнопки: одна для включения и одна для отключения. Обратите внимание, что у них для управления пускателем используются разные по назначению контакты. У кнопки «Стоп» они нормально замкнуты, то есть, если кнопка не нажата, группа контактов замкнута, и размыкается при активации кнопки. У кнопки «Пуск» все наоборот.

Эти устройства могут содержать или только конкретный, нужный для работы элемент, либо быть универсальными, включая в себя и по одному замкнутому и разомкнутому контакту. В этом случае необходимо выбрать правильный.

Производители обычно снабжают свою продукцию символьными обозначениями, позволяющими определить назначение той или оной контактной группы. Стоповую кнопку обычно окрашивают в красный цвет. Цвет пусковой традиционно черный, то приветствуется зеленый, который соответствует сигналу «Включено» или «Включить». Такие кнопки используются, в основном, на дверях шкафов и панелях управления двигателями станков.

Для дистанционного управления используются кнопочные станции, содержащие две кнопки в одном корпусе. Станция соединяется с местом установки пускателя с помощью контрольного кабеля. В нем должно быть не менее трех жил, сечение которых может быть небольшим. Простейшая рабочая схема пускателя с тепловым реле

Магнитный пускатель

Теперь о том, на что следует обратить внимание, рассматривая сам пускатель перед его подключением. Самое важное – напряжение катушки управления, которое указано либо на ней самой, либо неподалеку. Если надпись гласит 220 В АС (или рядом с 220 стоит значок переменного тока), то для работы схемы управления потребуется фаза и ноль.

Интересное видео о работе магнитного пускателя смотрите ниже:

Если же это 380 В АС (того же переменного тока), то управлять пускателем будут две фазы. В процессе описания работы схемы управления будет понятно, в чем отличие.

При любых других значениях напряжения, наличии знака постоянного тока или букв DC подключить изделие к сети не получится. Оно предназначено для других цепей.

Еще нам потребуется использовать дополнительный контакт пускателя, называемый блок-контактом. У большинства аппаратов он маркируется цифрами 13НО (13NO, просто 13) и 14НО (14NO, 14).

Буквы НО означают «нормально открытый», то есть замыкается он только на притянутом пускателе, что при желании можно проверить мультиметром. Встречаются пускатели, имеющие нормально замкнутые дополнительные контакты, они не годятся для рассматриваемой схемы управления.

Силовые контакты предназначены для подключения нагрузки, которой они и управляют.

У разных производителей их маркировка отличается, но при их определении сложностей не возникает. Итак, крепим пускатель к поверхности или DIN-рейке в месте его постоянной дислокации, прокладываем силовые и контрольные кабели, начинаем подключение.

Схема управления пускателем на 220 В

Один мудрец сказал: есть 44 схемы подключения кнопок к магнитному пускателю, из которых 3 работают, а остальные – нет. Но правильная – только одна. Про нее и поговорим (смотри схему ниже).
Подключение силовых цепей лучше оставить на потом. Так будет проще доступ к винтам катушки, которые всегда перекрываются проводами основной цепи. Для питания цепей управления используем один из фазных контактов, от которой проводник отправляем на один из выводов кнопки «Стоп».

Это может быть или проводник, или жила кабеля.

От кнопки стоп пойдут уже два провода: один к кнопке «Пуск», второй – на блок-контакт пускателя.

Для этого между кнопками ставится перемычка, а к одной из них в месте ее подключения добавляется жила кабеля к пускателю. Со второго вывода кнопки «Пуск» тоже идут два провода: один на второй вывод блок-контакта, второй – к выводу «А1» катушки управления.

При подключении кнопок кабелем перемычка ставится уже на пускателе, к ней подключается третья жила. Второй вывод от катушки (А2) подключается к нулевой клемме. В принципе нет разницы, в каком порядке подключать вывода кнопок и блок-контакта. Желательно только именно вывод «А2» катушки управления соединить с нулевым проводником. Любой электрик ожидает, что нулевой потенциал будет только там.

Теперь можно подключить провода или кабели силовой цепи, не позабыв о том, что рядом с одним из них на входе присутствует провод на схему управления. И только с этой стороны на пускатель подается питание (традиционно – сверху). Попытка подключить кнопки на выход пускателя ни к чему не приведет.

Схема управления пускателем на 380 В

Все то же самое, но для того, чтобы катушка заработала, проводник от вывода «А2» надо подключить не к нулевой шинке, а к любой другой фазе, не использующейся до этого. Вся схема будет работать от двух фаз.

Подключение теплового реле в схему пускателя

Тепловое реле используется для защиты от перегрузки. Конечно, автоматическим выключателем он защищается при этом все равно, но его теплового элемента для этой цели недостаточно. И его нельзя настроить точно на номинальный ток мотора. Принцип работы теплового реле тот же, что и в автоматическом выключателе.

Ток проходит по греющим элементам, если его величина превысит заданную – отгибается биметаллическая пластинка и переключает контактики.

В этом есть еще одно отличие от автоматического выключателя: само тепловое реле ничего не отключает. Оно просто дает сигнал к отключению. Который нужно правильно использовать.
Силовые контакты теплового реле позволяют подключать его к пускателю напрямую, без проводов. Для этого каждый модельный ряд изделий взаимно дополняет друг друга. Например, ИЭК выпускает тепловые реле для своих пускателей, АВВ – своих. И так у каждого производителя. Но изделия разных фирм не стыкуются друг с другом.

Тепловые реле также могут иметь два независимых контакта: нормально замкнуты и нормально разомкнутый. Нам понадобится замкнутый – как в случае с кнопкой «Стоп». Тем более, что и функционально он будет работать так же, как эта кнопка: разрывать цепь питания катушки пускателя, чтобы он отпал.

Теперь потребуется врезать найденные контакты в схему управления. Теоретически это можно сделать почти в любом месте, но традиционно он подключается после катушки.

В описанном выше случае для этого потребуется от вывода «А2» отправить провод на контакт теплового реле, а от второго его контакта – уже туда, где до этого был подключен проводник. В случае с управлением от 220 В это – нулевая шинка, с 380 В – фаза на пускателе. Срабатывание теплового реле у большинства моделей никак не заметно.

Для возврата его в исходное состояние на панели прибора есть небольшая кнопочка, которая перекидывает при нажатии. Но это нужно делать не сразу, а дать реле остыть, иначе контакты не зафиксируются. Перед включением в работу после монтажа кнопку лучше нажать, исключив возможное переключение контактной системы в ходе транспортировки из-за тряски и вибраций.

Ещё одно интересное видео о работе магнитного пускателя:

Проверка работоспособности схемы

Для того, чтобы понять, правильно собрана схема или нет, нагрузку к пускателю лучше не подключать, оставив его нижние силовые клеммы свободными. Так вы обезопасите коммутируемое оборудование от лишних проблем. Включаем автоматический выключатель, подающий напряжение на испытуемый объект.

Само собой разумеется, пока идет монтаж, он должен быть отключен. А также любым доступным способом предотвращено случайное его включение посторонними лицами. Если после подачи напряжения пускатель не включился самостоятельно – уже хорошо.

Нажимаем на кнопку «Пуск», пускатель должен включиться. Если нет – проверяем замкнутое положение контактов кнопки «Стоп» и состояние теплового реле.

При диагностике неисправности помогает однополюсный указатель напряжения, которым можно легко проверить прохождение фазы через кнопку «Стоп» до кнопки «Пуск». Если при отпускании кнопки «Пуск» пускатель не фиксируется, а отпадает – неправильно подключены блок-контакты.

Проверьте – они должны подключиться параллельно этой кнопке. Правильно подключенный пускатель должен фиксироваться во включенном положении при механическом нажатии на подвижную часть магнитопровода.

Теперь проверяем работу теплового реле. Включаем пускатель и аккуратно отсоединяем любой проводок от контактов реле. Пускатель должен отпасть.

Для чего оно служит? На чем основан принцип действия устройства, и какими характеристиками оно обладает? Что нужно учитывать при выборе реле и его установке? На эти и другие вопросы вы найдете ответы в нашей статье. Также мы рассмотрим основные схемы подключения реле.

Что такое тепловое реле для электродвигателя

Прибором под названием тепловое реле (ТР) называют ряд устройств, разработанных для защиты электромеханических машин (двигателей) и аккумуляторных батарей от перегрева при токовых перегрузках. Также реле этого типа присутствуют в электрических цепях, осуществляющих контроль температурного режима на стадии выполнения разных технологических операций в производстве и схемах нагревательных элементов.

Базовым компонентом, встроенным в тепловое реле, является группа металлических пластин, части которых имеют разный коэффициент (биметалл). Механическая часть представлена подвижной системой, связанной с электрическими контактами защиты. Электротепловое реле обычно идет вместе с и

Принцип действия устройства

Тепловые перегрузки в двигателях и других электрических устройствах происходят тогда, когда величина проходящего через нагрузку тока превышает номинальный рабочий ток аппарата. На свойстве тока разогревать проводник при прохождении и построено ТР. Встроенные в него рассчитаны на определенную токовую нагрузку, превышение которой приводит к сильной их деформации (изгибу).

Пластины надавливают на подвижный рычаг, который, в свою очередь, воздействует на защитный контакт, размыкающий цепь. По сути, ток, при котором цепь разомкнулась, и есть током срабатывания. Его величина эквивалентна температуре, превышение которой может привести к физическому разрушению электрических приборов.

Современные ТР имеют стандартную группу контактов, одна пара которых является нормально замкнутой - 95, 96; другая - нормально разомкнутой - 97, 98. Первая предназначена для подключения пускателя, вторая - для схем сигнализации. Тепловое реле для электродвигателя способно работать в двух режимах. Автоматический предусматривает самостоятельное включение контактов пускателя при охлаждении пластин. В ручном режиме контакты в исходное состояние возвращает оператор, нажимая на кнопку «сброс». Также можно отрегулировать порог срабатывания устройства путем вращения подстроечного винта.

Еще одной функцией защитного устройства является отключение двигателя при обрыве фазы. В таком случае двигатель также перегревается, потребляя больший ток, и, соответственно, пластины реле разрывают цепь. Для предотвращения воздействия токов короткого замыкания, от которого ТР не в силах защитить двигатель, в цепь обязательно включают автомат защиты.

Виды тепловых реле

Существуют следующие модификации устройств - РТЛ, ТРН, РТТ и ТРП.

  • Особенности ТРП-реле. Устройство этого типа подходит для применения в условиях повышенной механической нагрузки. Оно обладает ударопрочным корпусом и вибростойким механизмом. Чувствительность элемента автоматики не зависит от температуры окружающего пространства, так как точка срабатывания лежит за пределом в 200 градусов по Цельсию. В основном применяют с двигателями асинхронного типа трехфазного питания (предел по току - 600 ампер и питание - до 500 вольт) и в цепях тока постоянного величиной до 440 вольт. предусматривает специальный нагревательный элемент для передачи тепла пластине, а также плавную регулировку изгиба последней. За счет этого можно менять предел срабатывания механизма до 5 %.

  • Особенности РТЛ-реле. Механизм устройства выполнен таким образом, что позволяет защищать нагрузку электродвигателя от перегрузок по току, а также в тех случаях, когда произошел обрыв фазы, и возникла фазовая асимметрия. Рабочий диапазон по току лежит в пределах 0.10-86.00 ампер. Бывают модели, совмещенные с пускателями либо нет.
  • Особенности РТТ-реле. Назначением является защита двигателей асинхронных, где ротор коротко замкнут, от токовых скачков, а также в случаях несоответствия фаз. Бывают встроены в магнитные пускатели и в схемы, управляемые электроприводами.

Технические характеристики

Самая важная характеристика теплового реле для электродвигателя - это зависимость скорости отключения контактов от величины тока. Она показывает быстродействие устройства при перегрузках и называется время-токовым показателем.

К основным характеристикам относят:

  • Номинальный ток. Это рабочий ток, на который рассчитано срабатывание устройства.
  • Номинальный ток рабочей пластины. Ток, при котором биметалл способен деформироваться в рабочем пределе без необратимых нарушений.
  • Пределы регулировки уставки по току. Диапазон тока, в котором реле будет срабатывать, выполняя защитную функцию.

Как подключить реле в схему

Чаще всего ТР подключают к нагрузке (двигателю) не напрямую, а через пускатель. В классической схеме подключения в качестве управляющего контакта используют КК1.1, который в исходном состоянии замкнут. Силовая группа (через нее идет электричество на двигатель) представлена КК1-контактом.

В момент, когда автомат защиты подает фазу, питающую цепь через стоп-кнопку, она проходит на кнопку "пуск" (3 контакт). При нажатии последней питание получает обмотка пускателя, а он, в свою очередь, подключает нагрузку. Фазы, поступающие на двигатель, также проходят через биметаллические пластины реле. Как только величина проходящего тока начинает превышать номинальный, защита срабатывает и обесточивает пускатель.

Следующая схема очень похожа на выше описанную с тем лишь отличием, что КК1.1-контакт (95-96 на корпусе) включен в ноль обмотки пускателя. Это более упрощенный вариант, который широко применяют. При подключения двигателя в цепи присутствуют два пускателя. Управление ними при помощи теплового реле возможно только, когда последнее включено в разрыв нулевого провода, являющегося общим для обоих пускателей.

Выбор реле

Главный параметр, по которому выбирают тепловое реле для электродвигателя, - это номинальный ток. Этот показатель высчитывают, опираясь на величину рабочего (номинального) тока электродвигателя. Идеально, когда ток срабатывания устройства выше рабочего в 0,2-0,3 раза при продолжительности перегрузки в треть часа.

Следует различать кратковременную перегрузку, где греется лишь провод обмотки электромашины, от перегрузки длительной, которую сопровождает разогрев всего корпуса. В последнем варианте нагрев продолжается до часа, и, следовательно, лишь в этом случае целесообразно применение ТР. На выбор теплового реле также влияют внешние факторы эксплуатации, а именно температура окружающей среды и ее стабильность. При постоянных скачках температуры необходимо, чтобы схема реле имела встроенную температурную компенсацию типа ТРН.

Что нужно учитывать при установке реле

Важно помнить, что биметаллическая пластина может нагреваться не только от проходящего тока, но и от температуры окружения. Это в первую очередь влияет на скорость срабатывания, хотя перегрузок по току может и не быть. Другой вариант, когда реле защиты двигателя попадает в зону принудительного охлаждения. В этом случае, наоборот, двигатель может испытывать тепловую перегрузку, а устройство защиты не срабатывать.

Чтобы избежать подобных ситуаций, следует придерживаться таких правил установки:

  • Выбирать реле с допустимо большей температурой срабатывания без ущерба для нагрузки.
  • Устанавливать защитное устройство в помещении, где расположен сам двигатель.
  • Избегать мест повышенного теплового излучения или близость кондиционеров.
  • Применять модели, имеющие функцию встроенной термокомпенсации.
  • Пользоваться регулировкой срабатывания пластины, настраивать в соответствии с фактической температурой в месте установки.

Заключение

Все электромонтажные работы по подключению реле и прочего высоковольтного оборудования должен выполнять квалифицированный специалист, имеющий допуск и профильное образование. Самостоятельное проведение подобных работ сопряжено с опасностью для жизни и работоспособности электрических устройств. Если же все-таки необходимо разобраться с тем, как подключить реле, при его покупке нужно требовать распечатку схемы, которая обычно идет в комплекте с изделием.

Магнитный пускатель (контактор) — это устройство, предназначенное для коммутации силовых электрических цепей. Чаще всего применяется для запуска/останова электродвигателей, но так же может использоваться для управления освещением и другими силовыми нагрузками.

Чем отличается контактор от магнитного пускателя?

Многих читателей могло покоробить от данного нами определения, в котором мы (сознательно) смешали понятия «магнитный пускатель» и «контактор», потому что в данной статье мы постараемся сделать упор на практику, нежели на строгую теорию. А на практике эти два понятия обычно сливаются в одно. Немногие инженеры смогут дать вразумительный ответ, чем же они действительно отличаются. Ответы различных специалистов могут в чём-то сходиться, а в чём-то противоречить друг другу. Представляем Вашему вниманию нашу версию ответа на этот вопрос.

Контактор — это законченное устройство, не предполагающее установки дополнительных модулей. Магнитный пускатель может быть оборудован дополнительными устройствами, например тепловым реле и дополнительными контактными группами. Магнитный пускателем может называться бокс с двумя кнопками «Пуск» и «Стоп». Внутри может находится один или два связанных между собой контактора (или пускателя), реализующими взаимную блокировку и реверс.

Магнитный пускатель предназначен для управления трёхфазным двигателем, поэтому всегда имеет три контакта для коммутации силовых линий. Контактор же в общем случае может иметь другое количество силовых контактов.

Устройства на этих рисунках правильнее называть магнитными пускателями. Устройство под цифрой один предполагает возможность установку дополнительных модулей, например теплового реле (рисунок 2). На третьем рисунке блок «пуск-стоп» для управления двигателем с защитой от перегрева и схемой автоподхвата. Это блочное устройство — тоже называют магнитным пускателем.

А вот устройства на следующих рисунках правильнее называть контакторами:

Они не предполагают установку на них дополнительных модулей. Устройство под цифрой 1 имеет 4 силовых контакта, второе устройство имеет два силовых контакта, а третье -три.

В заключение скажем: обо всех названных выше отличиях контактора и магнитного пускателя полезно знать для общего развития и помнить на всякий случай, однако придётся привыкнуть к тому, что на практике эти устройства никто обычно не разделяет.

Устройство и принцип работы магнитного пускателя

Устройство контактора чем-то похоже на — оно так же имеет катушку и группу контактов. Однако контакты магнитного пускателя — разные. Силовые контакты предназначены для коммутации той нагрузки, которой управляет этот контактор, они всегда нормально открытые. Существуют еще дополнительные контакты, предназначенные для реализации управления пускателем (об этом речь пойдёт ниже). Дополнительные контакты могут быть нормально открытыми (NO) и нормально закрытыми (NC).

В общем случае устройство магнитного пускателя выглядит так:

Когда на катушку пускателя подаётся управляющее напряжение (обычно контакты катушки обозначаются А1 и А2), подвижная часть якоря притягивается к неподвижной и это приводит к замыканию силовых контактов. Дополнительные контакты (при наличии) механически связаны с силовыми, поэтому в момент срабатывания контактора они также меняют своё состояние: нормально открытые — замыкаются, а нормально закрытые, наоборот, размыкаются.

Схема подключения магнитного пускателя

Так выглядит простейшая схема подключения двигателя через пускатель. Силовые контакты магнитного пускателя KM1 подключены к клеммам электродвигателя. Перед контактором установлен автоматический выключатель QF1 для защиты от перегрузки. Катушка реле (А1-А2) запитана через нормально разомкнутую кнопку «Пуск» и нормально замкнутую кнопку «Стоп». При нажатии кнопки «Пуск» на катушку приходит напряжение, контактор срабатывает, запуская электродвигатель. Для остановки двигателя нужно нажать «Стоп» — цепь катушки разорвётся и контактор «расцепит» силовые линии.

Эта схема будет работать только если кнопки «пуск» и «стоп» — с фиксацией.

Вместо кнопок может быть контакт другого реле или дискретный выход контроллера:

Контактор можно включить и выключить с помощью ПЛК. Один дискретный выход контроллера заменит кнопки «пуск» и «стоп» — они будут реализованы логикой контроллера.

Схема «самоподхвата» магнитного пускателя

Как уже было сказано, предыдущая схема с двумя кнопками работает только если кнопки с фиксацией. В реальной жизни её не используют из-за её неудобства и небезопасности. Вместо неё используют схему с автоподхватом (самоподхватом).

На этой схеме используется дополнительный нормально открытый контакт пускателя. При нажатии на кнопку «пуск» и сработки магнитного пускателя дополнительный контакт КМ1.1 замыкается одновременно с силовыми контактами. Теперь кнопку «пуск» можно отпустить — её «подхватит» контакт КМ1.1.

Нажатие кнопки «стоп» разорвёт цепь катушки и вместе с этим разомкнётся доп. контакт КМ1.1.

Подключение двигателя через пускатель с тепловым реле

На рисунке изображён магнитный пускатель с установленным на него тепловым реле. При нагревании электродвигатель начинает потреблять больший ток — его и фиксирует тепловое реле. На корпусе теплового реле можно задать значение тока, превышение которого вызовет сработку реле и замыкание его контактов.

Нормально закрытый контакт теплового реле использует в цепи питания катушки пускателя и рвёт её при сработке теплового реле, обеспечивая аварийное отключение двигателя. Нормально открытый контакт теплового реле может быть использован в сигнальной цепи, например для того, чтобы зажечь лампу «авария» при отключении электродвигателя по перегреву.

Реверсивный магнитный пускатель — устройство, с помощью которого можно запускать вращение двигателя в прямом и обратном направлениях. Это достигается за счёт смены чередования фаз на клеммах электродвигателя. Устройство состоит из двух взаимоблокирующихся контакторов. Один из контакторов коммутирует фазы в порядке А-В-С, а другой, например, А-С-В.

Взаимная блокировка нужна, чтобы нельзя было случайно одновременно включить оба контактора и устроить межфазное замыкание.

Схема реверсивного магнитного пускателя выглядит так:

Реверсивный пускатель может изменить чередование фаз на двигателе, коммутируя питающее двигатель напряжение через контактор КМ1 или КМ2. Обратите внимание, что порядок следования фаз на этих контакторов различается.

При нажатии Кнопки «Прямой пуск» двигатель запускается через контактор КМ1. При этом размыкается дополнительный контакт этого пускателя КМ1.2. Он блокирует запуск второго контактора КМ2, поэтому нажатие кнопки «Реверсивный пуск» ни к чему не приведёт. Для того чтобы запустить двигатель в обратном (реверсивном) направлении, нужно сначала остановить его кнопкой «Стоп».

При нажатии кнопки «Реверсивный пуск» срабатывает контактор КМ2, а его дополнительный контакт КМ2.2 блокирует контактор КМ1.

Автоподхват контакторов КМ1 и КМ2 осуществляется с помощью нормально открытых контактов КМ1.1 и КМ2.1 соответственно (см. раздел «Схема самоподхвата магнитного пускателя»).

Магнитные пускатели предназначены, главным образом, для дистанционного управления трехфазными асинхронными электродвигателями с короткозамкнутым ротором, а именно:

  • для пуска непосредственным подключением к сети и остановки (отключения) электродвигателя (нереверсивные пускатели),
  • для пуска, остановки и реверса электродвигателя (реверсивные пускатели).

Кроме этого, пускатели в исполнении с тепловым реле осуществляют также защиту управляемых электродвигателей от перегрузок недопустимой продолжительности.

Магнитные пускатели открытого исполнения предназначены для установки на панелях, в закрытых шкафах и других местах, защищенных от попадания пыли и посторонних предметов.

Магнитные пускатели защищенного исполнения предназначены для для установки внутри помещений, в которых окружающая среда не содержит значительного количества пыли.

Магнитные пускатели пылебрызгонепроницаемого исполнения предназначены как для внутренних, так и для наружных установок в местах, защищенных от солнечных лучей и от дождя (под навесом).

Магнитный пускатель серии ПМЛ

Устройство магнитного пускателя

Магнитные пускатели имеют магнитную систему , состоящую из якоря и сердечника и заключенную в пластмассовый корпус. На сердечнике помещена втягивающая катушка . По направляющим верхней части пускателя скользит траверса, на которой собраны якорь магнитной системы и мостики главных и блокировочных контактов с пружинами .

Принцип работы пускателя прост : при подаче напряжения на катушку якорь притягивается к сердечнику, нормально-открытые контакты замыкаются, нормально-закрытые размыкаются. При отключении пускателя происходит обратная картина: под действием возвратных пружин подвижные части возвращаются в исходное положение, при этом главные контакты и нормально-открытые блокконтакты размыкаются, нормально-закрытые блокконтакты замыкаются.

Реверсивные магнитные пускатели представляют собой два обычных пускателя, укрепленных на общей основании (панели) и имеющем электрические соединения, обеспечивающие электрическую блокировку через нормально-замкнутые блокировочные контакты обоих пускателей, которая предотвращает включение одного магнитного пускателя при включенном другом.

Самые распространенные схемы включения нереверсивного и реверсивного магнитного пускателя смотрите здесь: . В этих схемах предусмотрена нулевая защита с помощью нормально-открытого контакта пускателя, предотвращающая самопроизвольное включение пускателя при внезапном появлении напряжения.

Реверсивные пускатели могут также иметь механическую блокировку , которая располагается под основание (панелью) пускателя и также служит для предотвращения одновременного включения двух магнитных пускателей. При электрической блокировке через нормально-замкнутые контакты самого пускателя (что предусмотрено его внутренними соединениями) реверсивные пускатели надежно работают и без механической блокировки.

Реверсивный магнитный пускатель

Реверс электродвигателя при помощи реверсивного пускателя осуществляется через предварительную остановку, т.е. по схеме: отключение вращающегося двигателя - полная остановка - включение на обратное вращения. В этом случает пускатель может управлять электродвигателем соответствующей мощности.

В случае применения реверсирования или торможения электродвигателя противовключением его мощность должна быть выбрана ниже в 1,5 - 2 раза максимальной коммутационной мощности пускателя, что определяется состоянием контактов, т.е. их износоустойчивостью, при работе в применяемом режиме. В этом режиме пускатель должен работать без механической блокировки. При этом электрическая блокировка через нормально-замкнутые контакты магнитного пускателя обязательна.

Магнитные пускатели защищенного и пылебрызгонепроницаемого исполнений имеют оболочку. Оболочка пускателя пылебрызгонепроницаемого исполнения имеет специальные резиновые уплотнения для предотвращения попадания внутрь пускателя пыли и водяных брызг. Входные отверстия в оболочку закрыты специальными пробами с применением уплотнений.

Тепловые реле

Ряд магнитных пускателей комплектуется тепловыми реле , которые осуществляют тепловую защиту электродвигателя о перегрузок недопустимой продолжительности. Регулировка тока уставки реле - плавная и производится регулятором уставки путем поворота его отверткой. Здесь смотрите про . В случае невозможности осуществления тепловой защиты в повторно-краковременном режиме работы следует применять магнитные пускатели без теплового реле. От коротких замыканий тепловые реле не защищают

Тепловые реле

Схема прямого пуска и защиты асинхронного двигателя с короткозамкнутым ротором (а), (б) – пусковая характеристика двигателя (1) и защитная характеристика теплового реле (2)

Монтаж магнитных пускателей

Для надежной работы монтаж магнитных пускателей должен производится на ровной, жестко укрепленной вертикальной поверхности. Пускатели с тепловым реле рекомендуется устанавливать при наименьшей разности температуры воздуха, окружающего пускатель и электродвигатель.

Что бы не допустить ложных срабатываний не рекомендуется устанавливать пускатели с тепловым реле в местах подверженных ударам, резким толчкам и сильной тряске (например, на общей панели с электромагнитными аппаратами на номинальные токи более 150 А), так как при включении они создают большие удары и сотрясения.

Для уменьшения влияния на работу теплового реле дополнительного нагрева от посторонних источников тепла и соблюдении требования о недопустимости температуры окружающего пускатель воздуха более 40 о рекомендуется не размещать рядом с магнитными пускателями аппараты теплового действия ( и т.д.) и не устанавливать их с тепловым реле в верхних, наиболее нагреваемых частях шкафов.

При присоединении к контактному зажиму магнитного пускателя одного проводника его конец должен быть загнут в кольцеобразную или П-образную форму (для предотвращения перекоса пружинных шайб этого зажима). При присоединении к зажиму двух проводников примерно равного сечения их концы должны быть прямыми и распологаться по обе стороны от зажимного винта.

Присоединяемые концы медных проводников должны быть залужены. Концы многожильных проводников перед лужением должны быть скручены. В случае присоединения алюминиевых проводов их концы должны быть зачищены мелким надфилем под слоем смазки ЦИАТИМ или технического вазелина и дополнительно покрыты после зачистки кварцевазилиновой или цинко-вазелиновой пастой. Контакты и подвижные части магнитного пускателя смазывать нельзя.

Перед пуском магнитного пускателя необходимо произвести его наружный осмотр и убедится в исправности всех его частей, а также в свободном передвижении всех подвижных частей (от руки), сверить номинальное напряжение катушки пускателя с напряжением, подаваемым на катушку, убедится, что все электрические соединения выполнены по схеме.

При использовании пускателей в реверсивных режимах, нажав от руки подвижную траверсу до момента соприкосновения (начало замыкания) главных контактов, проверить наличие раствора нормально-замкнутых контактов, что необходимо для надежной работы электрической блокировки.

У включенного магнитного пускателя допускается небольшое гудение электромагнита , характерное для шихтованных магнитных систем .

Уход за магнитными пускателями в процессе эксплуатации

Уход за пускателями должен заключаться, прежде всего, в защите пускателя и теплового реле от пыли, грязи и влаги . Необходимо следить, чтобы винты контактных зажимов были плотно затянуты. Надо также проверять состояние контактов.

Контакты современных магнитных пускателей особого ухода не требуют. Срок износа контактов зависит от условий и режима работы пускателя. Зачистка контактов пускателей не рекомендуется, так как удаление контактного материала при зачистке приводит к уменьшению срока службы контактов. Только в отдельных случаях сильного оплавления контактов при отключении аварийного режима электродвигателя допускается их зачистка мелким надфилем.

При появлении после длительной эксплуатации магнитного пускателя гудения, носящего, характер дребезжания, необходимо чистой ветошью очистить от грязи рабочие поверхности электромагнита, проверить наличие воздушного зазора, а также проверить отсутствие заеданий подвижных частей и трещин на короткозамкнутых витках, расположенных на сердечнике.

При разборке и последующей сборке магнитного пускателя следует сохранять взаимное расположение якоря и сердечника, бывшее до разборки, так как их приработавшиеся поверхности способствуют устранению гудения. При разборках магнитных пускателей необходимо чистой и сухой ветошью протирать пыль с внутренних и наружных поверхностей пластмассовых деталей пускателя.

Электромагнитные пускатели предназначены для управления АД и трехфазными премниками электрического тока, в том числе:

    дистанционного пуска, непосредственным подключением к сети,

    остановки и

    реверсирования трехфазных асинхронных двигателей

    при наличии тепловых реле осуществляют защиту управляемых электродвигателей от:

    перегрузок недопустимой продолжительности

    и от токов, возникающих при обрыве одной из фаз.

Магнитный пускатель - это модифицированный контактор.

В отличие от контактора, магнитный пускатель комплектуется дополнительным оборудованием:

    тепловым реле,

    дополнительной контактной группой или

    автоматом для пуска электродвигателя

    плавкими предохранителями

    Помимо простого включения, в случае управления электродвигателем пускатель может выполнять функцию:

    переключения направления вращения его ротора (т. н. реверсивная схема), путем изменения порядка следования фаз для чего в пускатель встраивается второй контактор.

    переключения обмоток трехфазного двигателя со «звезды» на «треугольник» производится для уменьшения пускового тока двигателя.

Реверсивный магнитный пускатель представляет собой два трёхполюсных контактора, укреплённых на общем основании и сблокированных механической или электрической блокировкой, исключающей возможность одновременного включения контакторов.

Исполнение магнитных пускателей может быть открытым и защищенным (в корпусе); реверсивным и нереверсивным; с встроенной тепловой защитой электродвигателя от перегрузки и без нее.

Магнитные пускатели выбирают по следующим характеристикам:

    номинальное напряжение силовых контактов Uн. ≥ U;

    номинальное напряжение и ток катушки Uн.к = U ц.упр; Iн.авт ≥ IР;

    габарит Рп ≥ Р н.дв или Iн.м.п ≥ I н.дв;

    возможность реверсирования;

    наличие тепловых реле;

    условия окружающей среды;

    по количество блок-контактов.

Пример выбора магнитные пускатели и тепловые реле для управления и защиты электродвигателей «Потребителя 1».

Принимая во внимание, что U = 380 В, Рн = 7.5 кВт, Iн = 15,14 А, выбираем магнитный пускатель типа ПМЛ-222002 (второго габарита нереверсивный, с тепловым реле, степень защиты IP54 c кнопками «Пуск» и «Стоп»).

Номинальный ток магнитного пускателя, равный 25 А, больше номинального тока двигателя 15.14 А, что выполняет условия I н.м.п = >I н.

Выбор электротеплового реле и плавкой вставки на линию от РП1 до СУ1:

    IР – рабочий ток в линии = 15,14 А.

    КС.О, - коэффициент кратности срабатывания отсечки = 7.

    Пусковой ток I пуск = 15,14*7 =105,98 А

    Длительно допустимый ток Iдд = 28 А.

Исходя из номинального тока, выбираем тепловое реле РТЛ-1021 с возможностью регулирования диапазона тока несрабатывания в интервале от 13А до 19А.

2.3. Выбор плавкого предохранителя

Плавкие предохранители предназначены для защиты электрических сетей и приемников электроэнергии от токов короткого замыкания. Описание типов и примеры конструкции предохранителей с плавкими вставками приводятся в специальной литературе .

Пример выбора плавкой вставки для СУ1.

Расчетный ток плавкой вставки I р.пл. = I пуск / = 105,98 /2,5 = 42,4 А.

Коэффициент  = 2,5 при нечастых и легких пусках и  = 1,6 − 2 − при особо тяжелых условиях пуска.

Определяющим для выбора типа патрона и номинала калибровочной части плавкого предохранителя, исходя из условия I н.пл.  I р.пл., будет расчетный ток плавкой вставки I р.пл. = 42,4 А

Выбираем плавкую вставку предохранителя на ближайшее большое стандартное значение Iн.пл. = 45 А. Тип патрона предохранителя допускающего применение такой плавкой вставки НПН-60м. Для него Uн.п= 600 В, Iн.пp.= 60 А.

<=60/28=2,14<=3

Плавкая вставка защищает от токов короткого замыкания выполняя условие: Iпв/Iдд<=60/28=2,14<=3

Условие селективности требует, чтобы номинальный ток плавкой вставки каждого последующего предохранителя (от потребителя к источнику питания) был на одну-две ступени больше Iпл.вст. предыдущего предохранителя.

Сводная таблица 8 результатов согласования параметров настройки аппаратуры защиты.

Двигатель

Авт. Выключатель

Магнитный пускатель

Тепловое реле

Мощность: 7,5 кВт

Iпик =105,98

Iном = 15,14

Наименование: 4А132S4У3

Наименование:

Наименование:

Наименование:

N = 1500 об/мин.

Ток нагревателя =

от 13А до 19А

Iном.расц = 131,25

КПД = 87,5 %

Icp = 35,75 (Kc.п. =1,35)

Iотс =175 (Кс.о. =7)

Сводная таблица 9 результатов согласования параметров настройки аппаратуры защиты.

Двигатель

Авт. Выключатель

Магнитный пускатель

Тепловое реле

Мощность: 4 кВт

Наименование: 4А100L4У3

Наименование:

Наименование:

Наименование:

N = 1500 об/мин.

Ток нагревателя = от 7 А до 10 А

Iном.расц = 791

Icp = 135 (Kc.п. =1,5)

Iотс =100 (Кс.о. =10)

Сводная таблица 10 результатов согласования параметров настройки аппаратуры защиты.

Двигатель

Авт. Выключатель

Магнитный пускатель

Тепловое реле

Мощность: 18,5 кВт

Iном = 35,49

Наименование:

Наименование:

Наименование:

Наименование:

N = 1500 об/мин.

Ток нагревателя =

от 30 А до 41 А

Iном.расц = 791

Icp = 135 (Kc.п. =1,5)

Iотс =100 (Кс.о. =10)

Сводная таблица11 результатов согласования параметров настройки аппаратуры защиты.

Двигатель

Авт. Выключатель

Магнитный пускатель

Тепловое реле

Мощность: 22 кВт

Iном = 41,27

Наименование: 4А180S4У3

Наименование:

Наименование:

Наименование:

N = 1500 об/мин.

Ток нагревателя = от 38 А до 52 А

Iном.расц = 791

Icp = 135 (Kc.п. =1,5)

Iотс =100 (Кс.о. =10)

Сводная таблица12 результатов согласования параметров настройки аппаратуры защиты.

Двигатель

Авт. Выключатель

Магнитный пускатель

Тепловое реле

Мощность: 2,2 кВт

Наименование:

Наименование:

Наименование:

Наименование:

N = 1500 об/мин.

Ток нагревателя = от 3,8 А до 6 А

Iном.расц = 791

Icp = 135 (Kc.п. =1,5)

Iотс =100 (Кс.о. =10)

Сводная таблица13 результатов согласования параметров настройки аппаратуры защиты.

Двигатель

Авт. Выключатель

Магнитный пускатель

Тепловое реле

Мощность: 11кВт

K=Iпус/In=7,5

Iпик =164,63

Iном = 21,94

Наименование: 4А132М4У3

Наименование:

Наименование:

Наименование:

N = 1500 об/мин.

Ток нагревателя = от 18А до 25А

Iном.расц = 206,25

КПД = 87,5 %

Icp =33,75 (Kc.п. =1,35)

Iотс =250 (Кс.о. =10)

Библиографический список.

Алиев И.И. Электрические аппараты: справочник/ И.И. Алиев, М.Б. Абрамов. − М.: РадиоСофт, 2004 − 256 с.:ил

    Алиев И.И. Кабельные изделия: справочник/ И.И. Алиев, С.Б. Казанский. − М.: РадиоСофт, 2002. − 224с.:ил.

    Беляев А.В. Выбор аппаратуры защит и кабелей в сетях 0,4 кВ/ А.В. Беляев. – Л.: Энергоатомиздат, 1998. – 176 с.: ил.

    ГОСТ 21.614-88 (СТ СЭВ 3217-81). − М.: Издательство стандартов, 1988

    Плаксин Е.Б. Справочное пособие по электрооборудованию. Часть I/ Е.Б. Плаксин, Ю.П. Приваленков. − Кострома: Изд-во КГТУ, 1999.

    Плаксин Е.Б. Справочное пособие по электрооборудованию. ЧастьII/ Е.Б. Плаксин, Ю.П. Приваленков. − Кострома: Изд-во КГТУ, 1999.

    Плаксин Е.Б. Электрооборудование: справочные и методические материалы/ Е.Б. Плаксин, Ю.П. Приваленков, А.Е. Виноградова: под. ред. Е.Б. Плаксина − Кострома: Изд-во КГТУ, 2008.

    Правила устройства электроустановок / Минэнерго СССР. – 6-е изд., перераб. и доп. – М.: Энергоатомиздат, 1986. – 648 с. : ил.

    Шеховцев В.П. Справочное пособие по электрооборудованию и электроснабжению/ В.П Шеховцев. – М.: ФОРУМ: ИНФА- М, 2006. – 136 с.