Структура и функции экосистем. Экологическая система: понятие, суть, типы и уровни Какова основная функция экосистемы

Классификация и свойства экосистем.

    Состав и структура экосистем.

    Энергетика и продукция экосистемы

    Экологические пирамиды

    Виды экосистем.

Состав и структура экосистем

Если обратится к лекции №1 данного курса можно обнаружить, что в область изучения экологии входят три основных уровня организации жизни: популяционный, экосистемный и биосферный. Для решения многих глобальных проблем и принятия решений ключевую роль играет изучение организменного уровня.

Как известно, живые организмы и их неживое (абиотическое) окружение неразделимо связаны друг с другом и находятся в постоянном взаимодействии, образуя экосистемы.

Экосистема – это совокупность всех живых организмов, проживающих на общей территории вместе с окружающей их неживой средой.

Экосистема - основная функциональная единица в экологии, поскольку в неё входят и организмы и неживая среда - компоненты, взаимно влияющие на свойства друг друга и необходимые для поддержания жизни в той её форме, которая существует на Земле.

Примером может служить луг, лес, озеро.

Достаточно часто понятие экосистемы отождествляют с понятием биогеоценоз, однако эти термины не являются синонимами. Понятие экосистемы более широкое, охватывает все виды совокупностей живых организмов и среды обитания, биогеоценозом можно назвать лишь природные образования (лес, луг и т.п.). Т.о. любой биогеоценоз является экосистемой, но не любая экосистема является биогеоценозом.

В состав экосистемы представлен двумя группами компонентов: абиотическими – компоненты неживой природы (экотоп) и биотическими - компоненты живой природы (биоценоз).

Биоценоз – совокупность представителей растительного (фитоценоз), животного (зооценоз) мира и мира микроорганизмов (микробиоценоз). Экотоп включает две главные составляющие: климат во всех его многообразных проявлениях и геологическую среду – почвы-грунты или эдафотоп. Все компоненты данной системы находятся в постоянном и сложном взаимодействии (рис. 1).

Совершенно очевидным является тот факт, что экосистема является не однородной в пространстве и времени, в связи с чем, достаточно важным является рассмотрение пространственной структуры биогеоценоза. Прежде всего это ярусное строение фитоценозов, являющееся приспособлением в борьбе за солнечный свет. В широколиственных лесах выделяют до 6 ярусов.

В пространственной структуре биогеоценоза наблюдается также мозаичность – изменение растительного и животного сообщества по площади (концентрирование растительности вокруг водоемов).

Участие различных видов в формировании экосистемы не одинаково, так в экосистеме представители одного вида могут доминировать (например: сосна обыкновенная в сосновом бору), другие могут встречаться единично (снежный барс).

Виды, которые преобладают по численности, называются доминантными . Среди них есть такие, без которых другие виды существовать не могут или эдифакторы . Второстепенные виды - малочисленные и даже редкие играют огромную роль в формировании устойчивой экосистемы. Так был установлен всемирный закон устойчивости экосистем, согласно которому: чем выше биоразнообразие экосистемы, соответственно, чем больше «второстепенных» видов, тем она устойчивее.

С точки зрения трофической структуры (от греч.trophe– питание) экосистему можно разделить на два яруса:

    верхний автотрофный (самостоятельно питающийся) ярус или «зеленый пояс», включающий растения или их части, содержащие хлорофилл, где преобладают фиксация энергии света, использование простых неорганических соединений и накопление сложных органических соединений. Организмы, входящие в «зеленый пояс», называются автотрофными (от лат.: auto-сам, trofo-питание). Основной особенностью данных организмов является способность синтезировать органические вещества из неорганических в процессе фотосинтеза. Так как, будучи автотрофами, они создают первичное органическое вещество, продуцируя его из неорганического, они носят название продуцентов .

    нижний гетеротрофный (питаемый другими) ярус, или «коричневый пояс», в котором преобладает использование, трансформация и разложение сложных соединений. Организмы, входящие в данный пояс не могут строить собственное вещество из минеральных компонентов, вынуждены использовать то, что создано автотрофами, поедая их. Они называются гетеротрофами (от лат.: hetero-другими trofo-питание).

Однако специфика гетеротрофов может быть различна. Так часть организмов, использующая в питании готовые питательные вещества растений называются фитофагами - травоядными (фитос - pастение, фагос - пожиpатель, гр.) или растительноядными. Фитофаги - вторичные аккумуляторы солнечной энергии, первоначально накопленной растениями. консументами первого порядка (например: заяц, корова). Данная группа организмов относится кпервичным консументам .

Многим животным эволюция предопределила необходимость использования животных белков. Это группа зоофагов или хищников, поедающих фитофагов и более мелких хищников. Хищники - важнейшие pегулятоpы биологического равновесия: они не только pегулиpуют количество животных-фитофагов, но выступают как санитары, поедая в первую очередь животных больных и ослабевших. Примером может служить поедание хищными птицами мышей-полевок. Данная группа организмов относится квторичным консументам . Животные, питающиеся консументами второго порядка носят название консументов третьего порядка и т.д.

В любой системе неизбежно образуются органические отходы (трупы животных, экскременты и т.п.), которые также могут служить пищей для гетеротрофных организмов, получивших название редуцентов или сапрофитов .

Поэтому с биологической точки зрения в составе экосистемы удобно выделять следующие компоненты:

    неорганические вещества (C, N, CO2, H2O и др.) включающееся в круговороты.

    органические соединения (белки, углеводы, липиды, гумусовые вещества), связывающие биотическую и абиотическую части.

    воздушную, водную и субстратную среду, включающую климатический режим и другие физические факторы.

    продуцентов, автотрофных организмов, в основном зеленые растения, которые могут производить пищу из простых неорганических веществ.

    макроконсументов или фаготрофов (от греч. phagos - пожиратель) - гетеротрофных организмов, основном животных, питающихся другими организмами или частицами органического вещества.

    микроконсументов, сапротрофов, деструктрофов - гетеротрофных организмов, в основном бактерий и грибов, получающих энергию либо путем разложения мертвых тканей, либо путем поглощения растворенного органического вещества, выделяющегося самопроизвольно или извлеченного сапротрофами из растений и других организмов.

Все организмы, входящие в состав экосистемы, связаны тесными пищевыми связями (так один организм служит пищей для другого, который поедается третьим и т.д.). таким образом, в биогеоценозе образуется цепь последовательной передачи вещества и эквивалентной ему энергии от одних организмов к другим, или так называемая трофическая цепь.

Примерами таких цепей могут служить:

    ягель олень волк (экосистема тундры);

    трава корова человек (антропогенная экосистема);

микроскопические водоросли (фитопланктон) жучки и дафнии (зоопланктон) плотва щука чайки (водная экосистема).

Одна трофичиские цепи в экосистеме тесно переплетаются, образуя трофические сети. Так широко известно явление «трофического каскада»: морские вадры питаются морскими ежами, которые едят бурые водоросли, уничтожение охотниками выдр привело к уничтожению водорослей вследствие роста популяции ежей. Когда запретили охоту на выдр, водоросли стали возвращаться на места обитания.

Значительную часть гетеротрофов составляют сапрофаги и сапрофиты (грибы), использующие энергию детрита. Поэтому различают два вида трофических цепей: цепи выедания , или пастбищные, которые начинаются с поедания фотосинтезирующих организмов, и детритные цени разложения, которые начинаются с остатков отмерших растений, трупов и экскрементов животных

Энергетика и продукция экосистемы

Основным (и практически единственным) источником энергии в экосистеме является солнечный свет. Блок-схема потоков веществ и энергии в экосистеме представлена на рис. 3.

Поток энергии направлен в одну сторону, часть поступающей солнечной энергии преобразуется сообществом и переходит на качественно более новую ступень, трансформируясь в органическое вещество, представляющее собой более концентрированную форму энергии, чем солнечный свет, но большая часть энергии деградирует, проходит через систему покидает её в виде низкокачественной тепловой энергии (тепловой сток). Следует отметить, что только около 2 % поступающей на поверхность земли энергии усваивается автотрофными организмами, большая часть (до 98%) рассеивается в виде тепловой энергии.

Рис.3. Схема потоков веществ и энергии в экосистеме.

Энергия может накапливаться, затем снова высвобождаться или экспортироваться, но её нельзя использовать вторично. В отличие от энергии, элементы питания, в том числе биогенные элементы, необходимые для жизни (углерод, азот, фосфор и т.д.), и вода могут использоваться многократно. Эффективность повторного использования и размеры импорта и экспорта элементов питания сильно варьируют в зависимости от типа экосистемы.

На функциональной схеме сообщество изображено в виде пищевой сети, образованной автотрофами и гетеротрофами, связанными между собой соответствующими потоками энергии, круговоротами биогенных элементов.

Рис. 4. Поток энергии в пищевой цепи:

ОПЭ - общее поступление солнечной энергии; НЭ - неиспользованная экосистемой энергия; С - энергия, поглощенная растениями; Н- часть энергии (с первичной продукцией), использованная организмами трофических уровней; СН - часть поглощенной энергии, рассеянная в тепловой форме; Д 1 Д 2 , Д 3 -потери энергии на дыхание; Э - потери вещества в форме экскрементов и выделений; П в - валовая продукция продуцентов; П 1 - чистая первичная продукция; П 2 и П 3 - продукция консументов; в круге показаны биоредуценты -деструкторы мертвой органики.

Трофическая цепь в биогеоценозе есть одновременно цепь энергетическая, т. е. последовательный упорядоченный поток передачи энергии Солнца от продуцентов ко всем остальным звеньям (рис. 4).

Организмы-потребители (консументы), питаясь органическим веществом продуцентов, получают от них энергию, частично идущую на построение собственного органического вещества и связывающуюся в молекулах соответствующих химических соединений, а частично расходующуюся на дыхание, теплоотдачу, выполнение движений в процессе поиска пищи, ускользания от врагов и т. п.

Таким образом, в экосистеме имеет место непрерывный поток энергии, заключающийся в передаче ее от одного пищевого уровня к другому. В силу второго закона термодинамики этот процесс связан с рассеиванием энергии на каждом последующем звене, т. е. с ее потерями и возрастанием энтропии. Понятно, что это рассеивание все время компенсируется поступлением энергии от Солнца.

В процессе жизнедеятельности сообщества создается и расходуется органическое вещество. Это значит, что каждая экологическая система обладает определенной продуктивностью.

Продуктивность экологической системы - это скорость, с которой продуценты усваивают лучистую энергию в процессе фотосинтеза и хемосинтеза, образуя органическое вещество, которое может быть использовано в качестве пищи. Различают разные уровня продуцирования органического вещества: первичная продукция, создаваемая продуцентами в единицу вре­мени, и вторичная продукция - прирост за единицу времени массы консументов. Первичная продукция подразделяется на валовую и чистую продукцию. Валовая первичная продукция - это общая масса валового органического вещества, создавае­мая растением в единицу времени при данной скорости фотосинтеза, включая и траты растения на дыхание - от 40 до 70% от валовой продукции. Та часть валовой продукции, которая не израсходована «на дыхание», называется чистой первичной продукцией, представляет собой величину прироста растений и именно эта продукция потребляется консументами и редуцентами. Вторичная продукция не делится уже на валовую и чис­тую, так как консументы и редуценты, т.е. все гетеротрофы, увеличивают свою массу за счет первичной ранее созданной продукции.

Все живые компоненты экосистемы составляют общую биомассу сообщества в целом или тех или иных групп организмов. Ее выражают в г/см 3 в сыром или сухом виде, или в энергетических единицах - в калориях, джоулях и т.п. Если скорость изъятия биомассы консументами отстает от скорости прироста растений, то это ведет к постепенному приросту биомассы продуцентов и к избытку мертвого органического вещества. Последнее приводит к заторфовыванию болот и зарастанию мелких водоемов. В стабильных сообществах практически вся продукция тратится в трофических сетях, и биомасса остается практически постоянной.

Экологические пирамиды

Функциональные взаимосвязи, т. е. трофическую структуру, можно изобразить графически, в виде так называемых экологических пирамид. Основанием пирамиды служит уровень продуцентов, а последующие уровни питания образуют этажи и вершину пирамиды. Известны три основных типа экологических пирамид: 1) пирамида чисел , отражающая численность организмов на каждом уровне (пирамида Элтона); 2) пирамида биомассы , характеризующая массу живого вещества, - общий сухой вес, калорийность и т. д.; 3) пирамида продукции (или энергии), имеющая универсальный характер, показывающая изменение первичной продукции (или энергии) на последовательных трофических уровнях.

Пирамида чисел отображает отчетливую закономерность, обнаруженную Элтоном: количество особей, составляющих последовательный ряд звеньев от продуцентов к консументам, неуклонно уменьшается (рис. 5.). В основе этой закономерности лежит, во-первых, тот факт, что для уравновешивания массы большого тела необходимо много маленьких тел; во-вторых, от низших трофических уровней к высшим теряется количество энергии (от каждого уровня до предьщущего доходитлишь 10% энергии) и, в-третьих - обратная зависимость метаболизма от размера особей (чем мельче организм, тем интенсивнее обмен веществ, тем выше скорость роста их численности и биомассы).

Рис. 5. Упрощенная схема пирамиды Элтона

Однако пирамиды численности будут сильно различаться по форме в разных экосистемах, поэтому численность лучше приводить в табличной форме, а вот - биомассу - в графиче­ской. Она четко указывает на количество всего живого вещест­ва на данном трофическом уровне, например, в единицах массы на единицу площади - г/м 2 или на объем - г/м 3 и т. д.

В наземных экосистемах действует следующее правило пирамиды биомасс : суммарная масса растений превышает массу всех травоядных, а их масса превышает всю биомассу хищников. Это правило соблюдается, и биомасса всей цепочки изменяется с изменениями величины чистой продукции, отношение годового прироста которой к биомассе экосистемы невелико и колеблется в лесах разных географических зон от 2 до 6%. И только в луговых растительных сообществах она может достигать 40-55%, а в отдельных случаях, в полупустынях - 70-75 %. На рис. 6 показаны пирамиды биомасс некоторых биоценозов. Как видно из рисунка, для океана приведенное выше правило пирамиды биомасс недействительно - она имеет перевернутый (обращенный) вид.

Рис. 6. Пирамиды биомассы некоторых биоценозов: П - продуценты; РК - растительноядные консументы; ПК - плотоядные консументы; Ф – фитопланктон; З - зоопланктон

Для экосистемы океана характерна тенденция накапливания биомассы на высоких уровнях, у хищников. Хищники живут долго и скорость оборота их генераций мала, но у продуцентов - у фитопланктонных водорослей, оборачиваемость может в сотни раз превышать запас биомассы. Это значит, что их чистая продукция и здесь превышает продукцию, поглощенную консументами, т. е. через уровень продуцентов проходит больше энергии, чем через всех консументов.

Отсюда понятно, что еще более совершенным отражением влияния трофических отношений на экосистему должно быть правило пирамиды продукции (или энергии): на каждом предыдущем трофическом уровне количество биомассы, создаваемой за единицу времени (или энергии), больше, чем на последующем.

Трофические или пищевые цепи могут быть представлены в форме пирамиды. Численное значение каждой ступени такой пирамиды может быть выражены числом особей, их биомассой или накопленной в ней энергией.

В соответствии с законом пирамиды энергий Р.Линдемана и правила десяти процентов , с каждой ступени на последующую ступень переходит приблизительно 10 % (от 7 до 17 %) энергии или вещества в энергетическом выражении (рис.7). Заметим, что на каждом последующем уровне при снижении количества энергии ее качество возрастает, т.е. способность совершать работу единицы биомассы животного в соответствующее число раз выше, чем такой же биомассы растений.

Ярким примером является трофическая цепь открытого моря, представленная планктоном и китами. Масса планктона рассеяна в океанической воде и, при биопродуктивности открытого моря менее 0,5 г/м 2 сут -1 , количество потенциальной энергии в кубическом метре океанической воды бесконечно мало в сравнении с энергией кита, масса которого может достигать нескольких сотен тонн. Как известно, китовый жир - это высококалорийный продукт, который использовали даже для освещения.

В соответствии с последней цифрой сформулировано правило одного процента : для стабильности биосферы в целом доля возможного конечного потребления чистой первичной продукции в энергетическом выражении не должно превышать 1%.

В деструкции органики тоже наблюдается соответствующая последовательность: так около 90 % энергии чистой первичной продукции освобождают микроорганизмы и грибы, менее 10 % - беспозвоночные животные и менее 1 % - позвоночные животные, являющиеся конечными косументами.

В конечном итоге все три правила пирамид отражают энер-гетические~отношения в экосистеме, а пирамида продукции (энергии) имеет универсальный характер.

В природе, в стабильных системах биомасса изменяется незначительно, т. е. природа стремится использовать полностью валовую продукцию. Знание энергетики экосистемы и количественные ее показатели позволяют точно учесть возможность изъятия из природной экосистемы того или иного количества растительной и животной биомасссы без подрыва ее продуктивности.

Человек получает достаточно много продукции от природных систем, тем не менее основным источником пищи для него является сельское хозяйство. Создав агроэкосистемы, человек стремится получить как можно больше чистой продукции растительности, но ему необходимо тратить половину растительной массы на выкармливание травоядных животных, птиц и т. д., значительная часть продукции идет в промышленность и теряется в отбросах, т. е. и здесь теряется около 90% чистой продукции и только около 10% непосредственно используется на потребление человеком.

В природных экосистемах энергетические потоки также изменяются по своей интенсивности и характеру, но этот процесс регулируется действием экологических факторов, что проявляется в динамике экосистемы в целом.

Опираясь на пищевую цепь, как основу функционирования экосистемы, можно также объяснить случаи накопления в тканях некоторых веществ (например синтетических ядов), которые по мере их движения по трофической цепи не участвуют в нормальном обмене веществ организмов. Согласно правила биологического усиления происходит примерно десятикратное увеличение концентрации загрязнителя при переходе на более высокий уровень экологической пирамиды. В частности, казалось бы незначительное повышенное содержания радионуклидов в речной воде на первом уровне трофической цепи осваивается микpооpганизмами и планктоном, затем концентpиpуется в тканях pыб и достигает максимальных значений у чаек. Их яйца имеют уровень радионуклидов в 5000 pаз больший по сравнению с фоновым загрязнением.

Виды экосистем:

Существует несколько классификаций экосистем. Во-первых экосистемы подразделяются по характеру происхождения и делятся на природные (болото, луг) и искусственные (пашня, сад, космический корабль).

По размерам экосистемы подразделяются на:

    микроэкосистемы (например, ствол упавшего дерева или поляна в лесу)

    мезоэкосистемы (лесной массив или степной колок)

    макроэкосистемы (тайга, море)

    экосистемы глобального уровня (планеты Земля)

Энергия – наиболее удобная основа для классификации экосистем. Различают четыре фундаментальных типа экосистем по типу источника энергии:

    движимые Солнцем, малосубсидируемые

    движимые Солнцем, субсидируемые другими естественными источниками

    движимые Солнцем и субсидируемые человеком

    движимые топливом.

В большинстве случаев могут использоваться и два источника энергии - Солнце и топливо.

Природные экосистемы, движимые Солнцем, малосубсидируемые - это открытые океаны, высокогорные леса. Все они получают энергию практически только от одного источника - Солнца и имеют низкую продуктивность. Ежегодное потребление энергии оценивается ориентировочно в 10 3 -10 4 ккал-м 2 . Организмы, живущие в этих экосистемах, адаптированы к скудному количеству энергии и других ресурсов и эффективно их используют. Эти экосистемы очень важны для биосферы, так как занимают огромные площади. Океан покрывает около 70 % поверхности земного шара. По сути дела, это основные системы жизнеобеспечения, механизмы, стабилизирующие и поддерживающие условия на «космическом корабле» - Земле. Здесь ежедневно очищаются огромные объемы воздуха, возвращается в оборот вода, формируются климатические условия, поддерживается температура и выполняются другие функции, обеспечивающие жизнь. Кроме того, без всяких затрат со стороны человека здесь производится некоторое количество пищи и других материалов. Следует сказать и о не поддающихся учету эстетических ценностях этих экосистем.

Природные экосистемы, движимые Солнцем, субсидируемые другими естественными источник , - это экосистемы, обладающие естественной плодородностью и производящие излишки органического вещества, которые могут накапливаться. Они получают естественные энергетические субсидии в виде энергии приливов, прибоя, течений, поступающих с площади водосбора с дождем и ветром органических и минеральных веществ и т. п. Потребление энергии в них колеблется от 1*10 4 до 4*10 4 ккал*м -2 *год -1 . Прибрежная часть эстуария типа Невской губы - хороший пример таких экосистем, которые более плодородны, чем прилегающие участки суши, получающие то же количество солнечной энергии. Избыточное плодородие можно наблюдать и в дождевых лесах.

Экосистемы, движимые Солнцем и субсидируемые человеком , - это наземные и водные агроэкосистемы, получающие энергию не только от Солнца, но и от человека в виде энергетических дотаций. Высокая продуктивность их поддерживается мышечной энергией и энергией топлива, которые тратятся на возделывание, орошение, удобрение, селекцию, переработку, транспортировку и т.п. Хлеб, кукуруза, картофель «частично сделаны из нефти». Самое продуктивное сельское хозяйство получает энергии примерно столько же, сколько самые продуктивные природные экосистемы второго типа. Их продукция достигает приблизительно 50 000 ккал*м -2 год -1 . Различие между ними заключается в том, что человек направляет как можно больше энергии на производство продуктов питания ограниченного вида, а природа распределяет их между многими видами и накапливает энергию на «черный день», как бы раскладывая ее по разным карманам. Эта стратегия называется «стратегией повышения разнообразия в целях выживания».

Индустриально-городские экосистемы, движимые топливом , - венец достижений человечества. В индустриальных городах высококонцентрированная энергия топлива не дополняет, а заменяет солнечную энергию. Пищу - продукт систем, движимых Солнцем, - в город ввозят извне. Особенностью этих экосистем является огромная потребность плотно населенных городских районов в энергии - она на два-три порядка больше, чем в первых трех типах экосистем. Если в несубсидируемых экосистемах приток энергии колеблется от 10 3 до 10 4 ккал*м -2 год -1 , а в субсидируемых системах второго и третьего типа - от 10 4 до 4*10 4 ккал*м -2 год -1 , то в крупных индустриальных городах потребление энергии достигает нескольких миллионов килокалорий на 1 м 2: Нью-Йорк -4,8*10 6 , Токио – 3*10 6 , Москва - 10 6 ккал*м -2 год -1 .

Потребление энергии человеком в городе в среднем составляет более 80 млн ккал*год -1 ; для питания ему требуется всего около 1 млн ккал*год -1 , следовательно, на все другие виды деятельности (домашнее хозяйство, транспорт, промышленность и т. д.) человек расходует в 80 раз больше энергии, чем требуется для физиологи­ческого функционирования организма. Разумеется, в развиваю­щихся странах положение несколько иное.

Вертьянов С. Ю.

Водоем и лес как примеры экосистем

Большинство экосистем различаются видовым составом и свойствами среды обитания. Рассмотрим для примера биоценозы пресного водоема и листопадного леса.

Экосистема пресного водоема. Наиболее благоприятные условия для жизнедеятельности организмов создаются в прибрежной зоне. Вода здесь до самого дна прогревается солнечными лучами и насыщена кислородом. Вблизи берега развиваются многочисленные высшие растения (камыш, рогоз, водяной хвощ) и водоросли. В жаркое время у поверхности образуется тина - это тоже водоросли. На поверхности плавают листья и цветки белой кувшинки и желтой кубышки, мелкие пластинки ряски полностью затягивают поверхность некоторых прудов. В тихих заводях скользят по поверхности воды хищные клопы-водомерки и вращаются кругами жуки-вертячки.

В толще воды обитают рыбы и многочисленные насекомые - крупный хищный клоп гладыш, водяной скорпион и др. Мхи образуют на дне обширные темно-зеленые скопления. Донный ил населяют плоские черви планарии, весьма распространен кольчатый червь трубочник и пиявки.

Несмотря на внешнюю простоту пресноводного водоема, его трофическая структура (система пищевых отношений) достаточно сложна. Высшими растениями питаются личинки насекомых, амфибий, скоблящие брюхоногие моллюски, растительноядные рыбы. Многочисленные простейшие (жгутиковые, инфузории, голые и раковинные амебы), низшие ракообразные (дафнии, циклопы), фильтрующие двустворчатые моллюски, личинки насекомых (поденок, стрекоз, ручейников) поедают одноклеточные и многоклеточные водоросли.

Рачки, черви, личинки насекомых служат пищей рыбам и амфибиям (лягушкам, тритонам). Хищные рыбы (окунь) охотятся за растительноядными (карась), а крупные хищники (щука) - за более мелкими. Находят себе пищу и млекопитающие (выхухоль, бобры, выдры): они поедают рыбу, моллюсков, насекомых и их личинки.

Органические остатки оседают на дно, на них развиваются бактерии, потребляемые простейшими и фильтрующими моллюсками. Бактерии, жгутиковые и водные виды грибов разлагают органику на неорганические соединения, вновь используемые растениями и водорослями.

Причиной слабого развития жизни в некоторых водоемах является низкий уровень содержания минеральных веществ (соединений фосфора, азота и пр.) или неблагоприятная кислотность воды. Внесение минеральных удобрений и нормализация кислотности известкованием способствует развитию пресноводного планктона - комплекса мелких взвешенных в воде организмов (микроскопических водорослей, бактерий и их потребителей: инфузорий, рачков и пр.). Планктон, являясь основанием пищевой пирамиды, питает различных животных, потребляемых рыбами. В результате восстановительных мер продуктивность рыбных хозяйств значительно возрастает.

На развертывании в пространстве пищевых цепей водоема разработана технология переработки отходов животноводства. Навоз смывается в отстойники, где служит питанием многочисленным одноклеточным водорослям, вода "цветет". Водоросли вместе с водой небольшими дозами перемещают в другой водоем, где их поедают дафнии и другие рачки-фильтраторы. В третьем пруду на рачках выращивают рыбу. Чистая вода вновь используется на фермах, избыток рачков идет на белковый корм скоту, а рыба потребляется человеком.

Водоем, как и любой биоценоз, - целостная система, взаимосвязи в которой порой бывают очень сложны. Так, уничтожение бегемотов в некоторых африканских озерах привело к исчезновению рыбы. Фекалии бегемотов служили естественным удобрением водоемов и основой развития фито- и зоопланктона. Россия издавна славилась жемчугом, добытым из раковин жемчужниц. Личинки пресноводных двустворчатых моллюсков европейской жемчужницы первые недели могут развиваться только на жабрах лососевых - семги, форели, хариуса. Перевылов лососей в северных реках сократил численность жемчужниц. Теперь без моллюсков реки очищаются недостаточно эффективно, и икра лосося не может в них развиваться.

Экосистема листопадного леса. Суточные колебания температуры в лесу сглаживаются наличием растительности и повышенной влажностью. Осадков над лесом выпадает больше, чем над полем, но существенная их часть при небольших дождях не достигает поверхности почвы и испаряется с листьев деревьев и растений. Экосистему листопадного леса представляют несколько тысяч видов животных, более ста видов растений.

Корни деревьев одного вида зачастую срастаются между собой. В результате питательные вещества перераспределяются сложным образом. В густых еловых лесах срастается корнями до 30% деревьев, в дубняке - до 100%. Срастание корней разных видов и родов наблюдается крайне редко. В зависимости от действия различных экологических факторов деревья одного и того же возраста могут иметь вид мощных плодоносящих особей или тонких побегов, а могут даже состариться, не достигнув зрелого состояния.

Лесная растительность интенсивно конкурирует за свет. Лишь небольшая часть солнечных лучей достигает почвы, поэтому растения в лесу обитают в нескольких ярусах. Чем ниже ярус, тем более теневыносливые виды его занимают. В верхнем ярусе расположены кроны светолюбивых деревьев: дуба, березы, ясеня, липы, осины. Ниже - менее светолюбивые формы: клен, яблоня, груша. Еще ниже произрастают кустарники подлеска: калина, брусника, лещина. Мхи и травянистые растения образуют самый нижний ярус - напочвенный покров. Обилие полян и опушек значительно обогащает видовой состав растений, насекомых и птиц. Опушечный эффект используют при создании искусственных насаждений.

В почве живут норные грызуны (мыши, полевки), землеройки и другие мелкие существа. В нижнем ярусе леса обитают и хищные звери - лисы, медведи, барсуки. Часть млекопитающих занимает верхний ярус. На деревьях проводят основную часть времени белки, бурундучки и рыси. В различных ярусах леса гнездятся птицы: на ветвях и в дуплах деревьев, в кустарнике и траве.

Поверхность почвы покрыта подстилкой, образованной полуразложившимися остатками, опавшими листьями, мертвыми травами и ветками. В подстилке обитает множество насекомых и их личинок, дождевых червей, клещей, а также грибов, бактерий и сине-зеленых (зеленым налетом они покрывают поверхность почвы, камней и стволов деревьев). Для этих существ органика подстилки служит пищей. Жуки-мертвоеды, кожееды, личинки падальных мух, гнилостные бактерии эффективно уничтожают органические остатки. Значительную часть растительного опада составляет клетчатка. Бактерии, шляпочные и плесневые грибы вырабатывают ферменты, расщепляющие клетчатку до простых сахаров, легко усваиваемых живыми организмами. Обитатели почвы питаются и выделениями корневой системы деревьев, от 15% до 50% синтезируемых деревом органических кислот, углеводов и других соединений попадает через корневую систему в почву. При ослаблении деятельности почвенных организмов опад начинает накапливаться, деревья исчерпывают запасы минерального питания, чахнут, подвергаются нападениям вредителей и гибнут. Это явление мы, к сожалению, часто наблюдаем в городских насаждениях.

Значительную роль в жизни растений играют грибы и бактерии. Благодаря огромному количеству, быстроте размножения и высокой химической активности они существенно влияют на обменные процессы между корнями и почвой. Корневые системы лесных растений конкурируют за почвенный азот. С клубеньковыми бактериями, усваивающими азот из воздуха, сожительствуют виды акации, ольхи, лоха и облепихи. Бактерии потребляют синтезируемые ими углеводы и другие питательные вещества, а деревья - азотистые соединения, вырабатываемые бактериями. За год серая ольха способна фиксировать до 100 кг/га азота. В некоторых странах ольха используется как азотоудобряющая культура. Выраженной азотфиксацией обладают и микоризные грибы в сожительстве с корнями вересковых растений.

Каждый из пищевых уровней в лесной экосистеме представлен множеством видов, значение разных групп организмов для благополучного ее существования неодинаково. Сокращение численности крупных растительноядных копытных в большинстве случаев слабо отражается на других членах экосистемы, поскольку их биомасса относительно невелика, питающиеся ими хищники в состоянии обойтись менее крупной добычей, а избыток потреблявшейся копытными зеленой массы будет практически незаметен. Весьма значительна в лесной экосистеме роль растительноядных насекомых. Их биомасса во много раз больше, чем копытных животных, они выполняют важную функцию опылителей, участвуют в переработке опада и служат необходимым питанием для последующих уровней пищевых цепей.

Однако природный биоценоз - целостная система, в которой даже малозначимый с виду фактор на деле является важным. С любопытным фактом целостности дубрав столкнулись жители горы Шпессарт в Германии. На одном из склонов этой горы крестьяне вырубили дубы, а затем захотели их восстановить. Но как ни старались, на этом месте ничего не удавалось развести, кроме чахлых сосенок. В чем же дело? Оказалось, вместе с дубами были уничтожены олени. Их помет служил пищей множеству почвенных организмов, перерабатывавших остатки и удобрявших почву. Поэтому без оленей дубы и не хотели расти.

Наиболее важные свойства экосистем являются следствием иерархической организации уровней жизни. По мере объединения подсистем в более крупные системы у последних возникают уникальные свойства, которых не было на предыдущем уровне, которые нельзя предсказать на основании свойств систем низшего порядка, составляющих систему более высокого уровня организации. В экологии это качество называют эмерджентным, то есть неожиданно появляющимся.

Биологические системы обладают свойствами, которые нельзя свести к сумме свойств составляющих их подсистем. Например, водород и кислород, соединяясь, образуют воду - жидкость, свойства которой нельзя предсказать, исходя из свойств исходных газов, или психология толпы не есть сумма психологических портретов отдельных людей.

Американский эколог Ю. Одум писал: «Хорошо известный принцип несводимости свойств целого к сумме свойств его частей должен служить первой рабочей заповедью эколога», т. е. для изучения высокоорганизованных систем необходимо изучить именно их специфические свойства. Чтобы сохранить цивилизацию, недостаточно исследовать ее на уровне клетки или организма. Чтобы изучить проблему, например, загрязнения необходимо изучить законы функционирования высших систем.

Наиболее важной функцией любых экосистем является взаимодействие автотрофных и гетеротрофных процессов. Примерно миллион лет тому назад некоторая часть синтезируемого вещества не расходовалась, а сохранялась и накапливалась в осадках. Преобладание скорости синтеза над скоростью разложения органических веществ обусловило уменьшение содержания углекислого газа и накопление кислорода в атмосфере. Без наличия жизни состав атмосферы на Земле приближался бы к составу безжизненных планет Марса и Венеры. Это означает, что зеленые организмы сыграли основную роль в формировании геохимической среды Земли, благоприятной для других организмов. Наблюдаемое сейчас соотношение газов в атмосфере выработалось примерно 60 млн лет тому назад. Соотношение скоростей автотрофных и гетеротрофных процессов является одной из главных функциональных характеристик экосистем и определяется как соотношение концентрации СО 2 и О 2 в экосистемах, т. е. как соотношение аккумулированной продуцентами и рассеянной консументами энергий. Баланс этих процессов в экосистемах может быть положительным или отрицательным. Системы с преобладанием автотрофных процессов (тропический лес, мелкое озеро) имеют положительный баланс. Системы, в которых преобладают гетеротрофные процессы (горная река, город), имеют отрицательный баланс. Человек, сжигая органические вещества в виде горючих ископаемых, ведя сельское хозяйство, уничтожая леса, убыстряет процессы разложения. В воздух выбрасывается большое количество СО 2 , ранее связанного в угле, нефти, торфе, древесине. Установившееся равновесие автотрофных и гетеротрофных процессов на Земле поддерживается благодаря способности экосистем и биосферы к саморегуляции. Саморегуляция экосистем - важнейший фактор их существования - обеспечивается внутренними механизмами, устойчивыми интегративными связями между их компонентами, трофическими и энергетическими взаимоотношениями. Человек - самое могущественное существо, способное изменить функционирование экосистем. Человек относится к гетеротрофам, несмотря на совершенство техники, он нуждается в ресурсах жизнеобеспечения, даваемых природой. Сберечь человека можно только с помощью регулирующих механизмов, которые позволяют биосфере приспособиться к отдельным антропогенным воздействиям. Для поддержания своего жизнеобеспечения человек должен стремиться к сохранению режимов саморегуляции естественных систем жизнеобеспечения планеты.

Экосисте́ма , или экологи́ческая систе́ма (от древнегреческого οἶκος - жилище, местопребывание и σύστημα - система) - биологическая система, состоящая из сообщества живых организмов (биоценоз ), среды их обитания (биотоп ), системы связей, осуществляющей обмен веществом и энергией между ними.

Ученые дифференцируют экосистемы на микроэкосистемы (например, дерево), мезоэкосистемы (лес, пруд) и макроэкосистемы (океан, континент). Глобальной экосистемой стала биосфера.

Существуют свойства-признаки, которые позволяют определить понятие экосистемы, выступающей в качестве объекта правового регулирования. К ним относятся:

1. Замкнутость экосистемы . Ее самостоятельное функционирование. Можно сказать, что, например, капля воды, лес, море и т.д. являются экосистемами, поскольку в каждом из этих объектов функционирует собственная устойчивая система организмов (инфузорий в капле, рыб в море и т.п.). Замкнутость экологических систем обязывает всех природопользователей учитывать экологические последствия своих действий даже в том случае, если нет видимых проявлений воздействия на природу. Так, прокладка дороги на открытой местности, на первый взгляд, не влияет на окружающую природную среду. Но при определенных условиях дорога может стать источником экологического бедствия, например, если она будет проложена без учета стока паводковых вод, которые, накапливаясь, могут разрушить земляной покров.

2. Взаимосвязь экосистем . Этот признак обусловливает необходимость комплексного подхода при использовании природных объектов, который на практике получил название ландшафтного. Например, при отводе земель под пахотные угодья или проведении мелиорации необходимо учитывать миграционные пути представителей дикой фауны, сохранять нетронутыми отдельные кустарники, болота, перелески и т.д., то есть не нарушать сложившийся в данной местности ландшафт. Ландшафтный подход позволяет обеспечить общий экологический приоритет в природопользовании, в соответствии с которым все виды использования природных объектов должны быть подчинены требованиям экологического благополучия окружающей природной среды.

3. Биопродуктивность. Данный признак способствует самовоспроизводству экосистемы, выполнению той или иной функции, что определяет в результате различный правовой статус природного объекта. Так, земли повышенного плодородия нужно отводить для нужд сельского хозяйства, а для других целей - малопродуктивные. Продуктивность также учитывают при установлении платы за пользование природным объектом, при налогообложении, в случае возмещения ущерба или наступления страхового события.


Пример экосистемы - пруд с обитающими в нём растениями, рыбами, беспозвоночными животными, микроорганизмами, составляющими живую компоненту системы, биоценоз. Для пруда как экосистемы характерны донные отложения определенного состава, химический состав (ионный состав, концентрация растворенных газов) и физические параметры (прозрачность воды, тренд годичных изменений температуры), а также определённые показатели биологической продуктивности, трофический статус водоёма и специфические условия данного водоёма.

Другой пример экологической системы - лиственный лес в средней полосе России с определённым составом лесной подстилки, характерной для этого типа лесов почвой и устойчивым растительным сообществом, и, как следствие, со строго определёнными показателями микроклимата (температуры, влажности, освещённости) и соответствующим таким условиям среды комплексом животных организмов.

Немаловажным аспектом, позволяющим определять типы и границы экосистем, является трофическая структура сообщества и соотношение производителей биомассы, её потребителей и разрушающих биомассу организмов, а также показатели продуктивности и обмена вещества и энергии.

Экосистема - это сложная, самоорганизующаяся, саморегулирующаяся и саморазвивающаяся система. Основной характеристикой экосистемы является наличие относительно замкнутых, стабильных в пространстве и времени потоков вещества и энергии между биотической и абиотической частями экосистемы. Из этого следует, что не всякая биологическая система может назваться экосистемой, например, таковыми не являются аквариум или трухлявый пень.

Такие системы следует называть сообществами более низкого ранга, или же микрокосмами. Иногда для них употребляют понятие - фация (например, в геоэкологии), но оно не способно в полной мере описать такие системы, особенно искусственного происхождения.

Экосистема является открытой системой и характеризуется входными и выходными потоками вещества и энергии. Основа существования практически любой экосистемы - поток энергии солнечного света, который является следствием термоядерной реакции Солнца, - в прямом (фотосинтез) или косвенном (разложение органического вещества) виде. Исключением являются глубоководные экосистемы («чёрных» и «белых» курильщики), источником энергии в которых является внутреннее тепло земли и энергия химических реакций.

В соответствии с определениями между понятиями «экосистема» и «биогеоценоз» нет никакой разницы, биогеоценоз можно считать полным синонимом термина экосистема. Однако существует распространённое мнение, согласно которому биогеоценоз может служить аналогом экосистемы на самом начальном уровне, так как термин «биогеоценоз» делает бо́льший акцент на связь биоценоза с конкретным участком суши или водной среды, в то время как экосистема предполагает любой абстрактный участок. Поэтому биогеоценозы обычно считаются частным случаем экосистемы.

В экосистеме можно выделить два компонента - биотический и абиотический. Биотический делится на автотрофный (организмы, получающие первичную энергию для существования из фото- и хемосинтеза или продуценты) и гетеротрофный (организмы, получающие энергию из процессов окисления органического вещества - консументы и редуценты) компоненты, формирующие трофическую структуру экосистемы.

Единственным источником энергии для существования экосистемы и поддержания в ней различных процессов являются продуценты, усваивающие энергию солнца, (тепла, химических связей) с эффективностью 0,1 - 1 %, редко 3 - 4,5 % от первоначального количества. Автотрофы представляют первый трофический уровень экосистемы. Последующие трофические уровни экосистемы формируются за счёт консументов (2-ой, 3-й, 4-й и последующие уровни) и замыкаются редуцентами, которые переводят неживое органическое вещество в минеральную форму (абиотический компонент), которая может быть усвоена автотрофным элементом.

Обычно понятие экотоп определялось как местообитание организмов, характеризующееся определённым сочетанием экологических условий: почв, грунтов, микроклимата и др. Однако, в этом случае это понятие фактически почти идентично понятию климатоп .

Например, изливающаяся в океан лава на острове Гавайи формирует новый прибрежный экотоп.

В настоящее время под экотопом, в отличие от биотопа, понимается определённая территория или акватория со всем набором и особенностями почв, грунтов, микроклимата и других факторов в неизменённом организмами виде. Примерами экотопа могут служить наносные грунты, новообразовавшиеся вулканические или коралловые острова, вырытые человеком карьеры и другие заново образовавшиеся территории. В этом случае климатоп является частью экотопа.

Биотоп - преобразованный биотой экотоп или, более точно, участок территории, однородный по условиям жизни для определённых видов растений или животных, или же для формирования определённого биоценоза.

Под экологической системой (экосистемой) понимают любые сообщества, складывающиеся из живых существ и среды их обитания, которые объединены в единое целое. Возникновение такой своеобразной «клеточки» биосферы вызвано взаимозависимостью, а также причинно-следственными связями между ее компонентами.

Определение понятия

Экосистема является ключевым элементом экологии. Введение данного термина было предложено в 1935 г. ученым А. Тенсли. Экологическая система включает в себя несколько понятий:

1. Биоценоз. Под данным термином понимается сообщество, сформированное живыми организмами.

2. Биотоп. Это не что иное, как среда обитания организмов, составляющих основу биоценоза.

3. Виды связей тех организмов, которые существуют в определенном ареале обитания.

4. Процессы обмена веществ, происходящие между организмами в биотопе.

Исходя из вышеизложенного можно понять, что экосистема представляет собой объединение элементов живой, а также неживой природы. Причем между такими компонентами в обязательном порядке осуществляется обмен энергией, благодаря которому создаются условия, способствующие поддержанию жизни. При этом в основе любой экосистемы, которая находится на нашей планете, лежит энергия солнца.

Классификация

Для того чтобы сгруппировать экологические системы, ученые выбрали такой ее признак, как среда обитания. Именно по нему удобнее всего производить классификацию, так как ареалом обуславливаются биоэнергетические и климатические, а также биологические особенности подобных сообществ. Кроме этого, экосистемы делят по размерам на:

1. Микроэкосистемы. В них входят компоненты живой и неживой природы нижней ступени, которые по своим размерам сходны с малыми компонентами среды. Сюда относят и небольшой водоем, и гниющий ствол уже упавшего дерева.

2. Мезоэкосистемы. В них входят, например, река, лес и т.д.

3. Макроэкосистемы. Подобные сообщества природных компонентов распространены в пределах материков, океанов и морей. К системе такого вида относят, например, материки и горы.

4. Глобальные экосистемы. Это биосфера.

Кроме этого, выделяют экологические системы по уровню антропогенного воздействия. В них включены:

1. Естественные, или природные. Такие экосистемы не нарушены воздействием на них человеческого фактора. К ним можно отнести океанические впадины, заповедники и джунгли Амазонии, находящиеся вдалеке от людских поселений.

2. Социоприродные. Под ними понимают естественные системы, которые изменены человеком (водохранилище, парк).

3. Антропогенные. Подобные экосистемы люди создают с целью получения выгоды.

Выделяют совокупность компонентов живой и неживой природы и по структуре. Сюда входят прибрежные, морские и пресноводные системы.

Существующая классификация рассматривает группировку подобных элементов и по источникам энергии. Разумеется, основным из них является солнце. Однако могут присутствовать и прочие субсидирующие источники.

Классифицируются экосистемы и по их расположению на планете. При этом выделяют:

1. Наземные биомы. Сюда входят тропические полувечнозеленые леса, кустарниковые и травянистые пустыни, степи и саванны, хвойные и листопадные леса, а также тундры.

2. Водяные экологические системы. Это могут быть пресноводные образования (озера и пруды, ручьи и реки, болота и заболоченные угодья). Входят в эту группу и морские экосистемы (океан и воды прибрежного континентального шельфа).

Стоит иметь в виду, что приведенная выше классификация является далеко не полной и учитывает только биомы - наиболее крупные образования. Какими свойствами обладает экосистема? Рассмотрим те характеристики, которые присущи для каждого из вышеперечисленного вида природных сообществ.

Целостность

С чего следует начать, если перед вами стоит вопрос: «Укажите основные свойства экосистемы?». Разумеется, с ее целостности, которая обеспечивает взаимосвязь обитающих в ней организмов не только друг с другом, но и той природной средой, где они находятся.

Отмечено, что жизнедеятельность и существование популяций, которые населяют экосистему, регулируется многочисленными абиотическими и биотическими факторами. При этом все жизненно важные химические элементы и органические соединения в совокупности образуют между собой круговорот веществ. Если объяснять подобные основные свойства экосистемы кратко, то можно отметить, что растениями черпаются из среды обитания минеральные вещества. Поглощают они кислород для дыхания, а также углекислый газ для осуществления фотосинтеза. При этом растениями во время этих же процессов выделяется в атмосферу кислород и углекислый газ.

Далее происходит питание организмов, входящих во все популяции экосистемы. Пищей для них служат неорганические и органические вещества растений. Не покидают экосистему и химические компоненты подобных соединений. По существующим в природе пищевым цепочкам они доходят вплоть до редуцентов, а после возвращаются ими к своему начальному состоянию в виде простых молекул и минеральных соединений. Неоценима при этом и роль солнечной энергии. Она аккумулируется зелеными растениями и способствует обеспечению жизнедеятельности каждого организма биоценоза. В этом и состоит одно из основных свойств экосистем - закон подтверждающий целостность природы, которая выражается во взаимосвязи существ между собой и со своей средой обитания.

Самовоспроизводимость

Какие еще существуют свойства экосистем? Немаловажный из них - самовоспроизводство. Основным условием для его поддержания являются:

  • присутствие в среде энергии и пищи (для хемотрофов - химической, для автотрофов - солнечной);
  • способность организмов к размножению;
  • свойства живых существ, благодаря которым они воспроизводят химический состав, а также физические свойства, присущие природной среде (например, прозрачность воды или структуру почвы).

Устойчивость

Как называют свойство экосистемы сохраняться при внешних воздействиях? Конечно же, ее устойчивостью. Из всех свойств экосистем именно эта способствует длительному существованию совокупности живых и неживых организмов. Даже значительные колебания внешних факторов не оказывают воздействия на изменения внутренних параметров. Например, при снижении осадков над лесом до 30 % массив потеряет своей зеленой массы всего до 15 %. Что касается численности первичных консументов, то она снизится лишь на 5 %. Возможность переносить неблагоприятные условия напрямую зависит от выносливости организмов. Сохранение их способности к размножению в широком диапазоне условий усиливается при этом возможностью изменения цепочек питания в наиболее богатых сообществах.

Однако устойчивость экосистемы имеет тенденцию к снижению при объединениях видового состава.

Самыми богатыми жизнью считаются тропические леса. В них насчитывается до 9 тыс. растений. В связи со столь богатым разнообразием видов такие экосистемы считаются самыми устойчивыми. Далее следуют растительные массивы, расположенные в средней полосе. В таких лесах встречается до 2000 видов флоры. Менее устойчивыми считаются тундровые биоценозы (500 видов). Мало устойчивыми являются экологические системы океанических островов. На еще более низкой ступеньке находятся фруктовые сады. А что касается посевных полей, то они и вовсе, не поддерживаемые человеком, существовать не смогут. Такие земли быстро зарастают сорняками и начинают уничтожаться вредителями.

Саморегуляция

Что еще является основным свойством экосистемы? Ее саморегуляция, эффективность которой определена разнообразием не только видов, но и пищевых взаимоотношений, которые имеют место между ними.

Например, если снижается численность какого-либо природного консумента, то при существующем разнообразии видов хищники начинают питаться теми животными, которых в природе насчитывается большее количество, но которые раньше являлись для них второстепенными.

Длинные цепочки питания очень часто пересекаются, что способствует созданию их вариации, которые зависят от численности жертв, урожая растений и т. д. Львы и тигры, если отсутствуют копытные, начинают питаться не такими крупными животными. Порой они даже переходят на растительную пищу. А вот сокол-сапсан, питающийся в воздухе, при массовом размножении леммингов начинает употреблять в пищу этих зверьков, подхватывая их прямо с земли.

Пищевая цепь «растения - мышь - змея - орел» порой сокращается. Из нее выпадает змея. Если год более благоприятный, то численность различных видов подлежит восстановлению, нормализуя при этом пищевые отношения, имеющие место в биоценозе. Если год урожайный для растений, то количество травоядных также увеличивается. Пища хищникам обеспечена, и они также быстро размножаются. Если год неурожайный, то, соответственно, в экосистеме снижается количество травоядных. В такие годы практически не размножаются и хищники.

Саморегуляцию как свойство экосистемы можно проследить и на колебании в зависимости от года численности популяций леммингов. Один раз в несколько лет количество этих зверьков стремительно увеличивается. Они начинают объедать растительность тундровой зоны. Через организм леммингов вещества, находящиеся в растениях, переходят в детрит. На протяжении нескольких лет происходит процесс минерализации, что способствует образованию плодородной почвы, на которой произрастает питательный растительный покров.

Если годы малокормные, то количество леммингов стремительно снижается. Это происходит не только из-за недостаточного питания, но и из-за быстро размножающихся хищников. Среди них совы, песцы и лисы. Таким образом растения, а также лемминги с хищниками способствуют саморегуляции экосистемы тундры, сохраняя при этом ее долговечность и устойчивость.

Эмерджентные свойства

Порой экосистемам становятся присущи новые, уникальные характеристики, которые являются итогом синергичного взаимодействия элементов. Их называют эмерджентными свойствами экосистемы. Так, некоторые кишечнополостные животные и водоросли совместно эволюционируют, образуя при этом цепь коралловых рифов.

Это способствует возникновению эффективного механизма круговорота компонентов питания, что позволяет подобной комбинированной системе постоянно поддерживать самую высокую продуктивность в воде, отличающейся небольшим содержанием питательных веществ. Таким образом, огромное разнообразие и продуктивность коралловых рифов и считаются эмерджентными свойствами, которые характерны для этого подводного сообщества.

Сукцессия

Все экосистемы устойчивы только относительно. Ведь идет время, меняются внешние условия. Несколько иным становится характер взаимодействия друг с другом организмов, включенных в биоценоз.

Изменения экосистем могут быть циклическими и поступательными. В первом случае они происходят из-за суточных, сезонных или многолетних преобразований в природе. Так, после засушливого года наступает влажный, что влияет на численность популяций тех организмов, которые приспособлены, соответственно, либо к засухе, либо к высокой влажности.

Что касается поступательных изменений, то они являются более продолжительными, приводя, как правило, к смене биоценозов. Они вызываются:

  • изменениями в природной среде, вызванными продолжительным влиянием жизнедеятельности организмов;
  • установлением наиболее стабильных отношений между различными видами, которые происходят после их нарушений, например, во время лесных пожаров, перемен в климате и т.д.;
  • влиянием людей.

Такие поступательные изменения носят название «сукцессия», что в переводе с латинского означает «преемственность», «вступление на чье-либо место». В ходе данного процесса один биоценоз сменяется другим, более устойчивым.

Например, для сукцессии, происходящей в местности с голой каменистой поверхностью, характерно выветривание горных пород. Это происходит под действием влажности и температуры, солнечного света и воздушных масс. Далее разрушают породы лишайники и водоросли, грибы и бактерии. Образующиеся в результате жизнедеятельности этих организмов кислоты, растворяют камни и минерализуют почвенный слой. Это способствует накоплению питательной смеси растительных остатков, обогащенных азотом. Она служит прекрасной основой для роста неприхотливых, не имеющих корней споровых растений, например, мхов. По мере их отмирания формируется небольшой по толщине почвенный слой, на котором появляются клевер, злаки, осока и другие травянистые растения, которые лишают мхи влаги. Далее появляются кустарники. Почва постепенно обогащается и становится пригодной для произрастания деревьев. Таким образом, данный биоценоз постепенно превращается в зрелое и устойчивое сосуществование живых и неживых компонентов.

Какие свойства экосистемы изменяются при антропогенном преобразовании? Довольно значительные. Особенно это можно заметить в зеленых зонах, существующих близ городов. На таких территориях растительность весьма интенсивно вытаптывается человеком, который собирает ягоды, грибы или просто совершает прогулки на природе. Это травмирует корни лесных трав, которые находятся сразу под подстилкой леса. Почва уплотняется и начинает плохо впитывать влагу.

Что еще изменяет свойства экосистем зеленых зон? Присутствие человека становится причиной повреждения подроста древесной растительности, что можно заметить по засохшим верхушкам. Пораженные деревья страдают от грибов и вредителей. Листва редеет, лес становится светлее. На этих территориях начинают распространяться луговые травы, предпочитающие солнечные лучи. Они же представляют собой растения, наиболее устойчивые к вытаптыванию.

Естественные и антропогенные экосистемы

Между этими сообществами существует как сходство, так и некоторые различия. Так, свойства естественных и антропогенных экосистем схожи в том, что они:

  • являются открытыми и поглощают энергию солнца;
  • состоят из консументов, продуцентов и редуцентов;
  • включают в себя экологические пирамиды и цепи питания;
  • состоят из организмов, у которых существует борьба за выживание, естественный или искусственный отбор, а также наследственная изменчивость;
  • в качестве своей основы содержат продуценты, использующие солнечную энергию и являющиеся первым из звеньев в пищевой цепочке.

Различия между этими двумя системами можно увидеть в:

  • действии и направлении отбора особей;
  • общем круговороте питательных элементов;
  • источнике энергии;
  • разнообразии и устойчивости видов;
  • способности к саморегуляции и самодостаточности;
  • продуктивности.

Биосфера

При взаимодействии абиотической и биотической частей произошло образование уникальной среды. Это биосфера как глобальная экосистема. Основные свойства биосферы - круговорот веществ, который обеспечивает существование баланса биоценозов. Без этой среды невозможна жизнь на нашей планете.

Как уже было сказано выше, экосистемы классифицируются по размерам и бывают различных уровней сложности. Более мелкие системы взаимодействия организмов входят в состав более крупных, а те являются частью еще более внушительных по своим масштабам. Совокупность макроэкосистем образует глобальное сообщество, которое и называют биосфера. В ней существует все живое на Земле.

Какие свойства экосистемы характерны и для биосферы? Это круговорот энергии, вызванный различным трофическим участием продуцентов, редуцентов и консументов. Это и является ответом на вопрос «Какие свойства биосферы позволяют называть ее экосистемой?». Подобный признак является ключевым. Он же обеспечивает и стабильность существующей схемы взаимодействия организмов.

Какие свойства экосистемы характерны и для биосферы? Все те, которые присущи подобным сообществам. Однако более существенные функции выполняет биосфера как глобальная экосистема. Основные свойства биосферы заключены:

  • в круговороте веществ (большом - океан и суша, а также малом - живое и косное вещество);
  • в наличии трех участников трофической цепи в виде продуцентов, консументов и редуцентов;
  • в стабильности и потенциальной бессмертности до тех пор, пока в системе существуют продуценты.

В биосфере заключены все свойства экосистем, существующих на планете. Именно поэтому ее и называют глобальной.

Под воздействием деятельности человека у биосферы появляются признаки, не являющиеся свойствами экосистемы. Происходит нарушение цепочки взаимодействия среды обитания организмов, снижается склонность к равновесию, происходит дисбаланс в обмене энергии. Это требует от человека понимания того, что изменения любого компонента глобального сообщества неизбежно повлияет на все остальные, оказав негативное воздействие на жизнь нашей планеты.