Самодельный защитный экран для датчика метеостанции. Метеостанция своими руками (Погодная станция)

Вам понадобится

  • - Плата Ардуино или аналог;
  • - датчик температуры и влажности DHT11;
  • - датчик давления BMP085;
  • - датчик углекислого газа MQ135;
  • - LCD дисплей 1602;
  • - потенциометр 10 кОм;
  • - корпус для погодной станции;
  • - кусок фольгированного стеклотекстолита;
  • - винты для крепления компонентов;
  • - компьютер;
  • - соединительные провода;
  • - разъём для подачи питания;
  • - паяльник.

Инструкция

Для начала нужно подобрать подходящий корпус. Туда должны вместиться все комплектующие будущей комнатной метеостанции. Такие корпуса продаются во многих магазинах радиоэлектроники. Или воспользуйтесь любым другим корпусом, который сможете найти.
Прикиньте, как все компоненты будут размещаться внутри. Прорежьте окно для закрепления LCD дисплея, если его нет. Если будете размещать внутри датчик углекислого газа, который достаточно сильно греется, то разместите его в противоположной от других датчиков стороне или сделайте его выносным. Предусмотрите отверстие для разъёма питания.

Несколько слов об используемых компонентах.
LCD-дисплей 1602 использует 6 пинов Arduino + 4 на питание (подсветка и знакосинтезатор).
Датчик температуры и влажности DHT11 подключается к любому цифровому пину. Для чтения значений будем использовать библиотеку DHT11.rar, которую можно скачать, например, тут: https://yadi.sk/d/1LiFmQWITGPAY
Датчик давления BMP085 подключается по интерфейсу I2C к двум пинам Arduino: SDA - к аналоговому пину A4 и SCL - к аналоговому пину A5. Обратите внимание, что для питания на датчик подаётся напряжение +3,3 В.
Датчик углекислого газа MQ135 подключается к одному аналоговому пину.
В принципе, для оценки метеообстановки достаточно иметь данные о температуре, влажности и атмосферном давлении, а датчик углекислого газа необязателен.
Но используя все 3 датчика, у нас будут задействованы 7 цифровых и 3 аналоговых пина Ардуино. Ну и питание, естественно.

Схема метеостанции показана на рисунке. Тут всё ясно.

Напишем скетч для Ардуино. Текст программы, ввиду значительного размера, приводится в виде ссылки в приложении к статье в разделе "Источники". Весь код снабжён подробными и понятными комментариями.
Загрузим скетч в память контроллера платы Ардуино.

Сделаем печатную плату для размещения компонентов внутри корпуса - это самое удобное решение для компоновки и подключения сенсоров. Для изготовления печатной платы в домашних условиях я использую "лазерно-утюжную" технологию (мы её подробно описывали в прошлых статьях) и травление с помощью лимонной кислоты. Предусмотрим на плате места для перемычек ("джамперов"), чтобы иметь возможность отключать датчики. Это будет полезно, если будет нужно перепрограммировать микроконтроллер, когда возникнет желание модифицировать программу.
С помощью пайки установим датчики давления и газов.
Для установки платы Arduino Nano удобно использовать специальные адаптеры или гнёзда с шагом 2,54. Но за неимением этих деталей и из-за экономии пространства внутри корпуса, я установлю Ардуино также пайкой.
Термодатчик будет располагаться на некотором отдалении от платы и будет теплоизолирован от внутренностей метеостанции с помощью специальной изоляционной прокладки.
Предусмотрим места для подводки внешнего питания к нашей самодельной плате. Я буду использовать обычное зарядное устройство на 5 В от старого сломанного роутера. Плюс 5 вольт от зарядного устройства будут подаваться на пин Vin платы Arduino.
ЖК-экран будет крепиться винтами прямо к корпусу, к передней части. Подключаться будет проводами с разъёмами быстрого подключения типа "Dupont".

Метеостанция построена на Picaxe микроконтроллере от Revolution Education Ltd и состоит из двух основных частей: наружный блок, который посылает свои данные каждые 2 секунды, используя передатчик на частоте 433МГц. И внутренний блок, который отображает полученные данные на 20 х 4 ЖК-дисплее, а также атмосферное давление, которое измеряется локально во внутреннем блоке.

Я пытался сохранить дизайн максимально простым и в то же время функциональным. Связь устройства с компьютером осуществляется через COM-порт. В настоящее время на компьютере непрерывно строятся графики из полученных значений, а также идет отображение значений на обычных индикаторах. Графики и показания датчиков доступны на встроенном веб-сервере, все данные сохранятся и т.о. можно посмотреть данные за любой промежуток времени.

Постройка метеостанции заняло несколько месяцев, от разработки до завершения, и в целом я очень доволен результатом. Я особенно рад, что мне удалось построить все с нуля при помощи обычных инструментов. Меня она полностью устраивает, но совершенству предела нет, и особенно это касается графического интерфейса. Я не предпринял никаких попыток коммерциализации метеостанции, но если вы думаете о создании метеостанции для себя, то это хороший выбор.

Уличные датчики

Датчики используются для измерения температуры, влажности, осадков, направления и скорости ветра. Датчики представляют собой сочетание механических и электронных устройств.

Датчик температуры и относительной влажности воздуха

Измерение температуры, пожалуй, проще всего. Для это используется датчик DS18B20. Для измерения влажности был использован HIH-3610, выдающий напряжение 0.8 - 3.9В при влажности 0% до 100%

Я установил оба датчика на небольшой печатной плате. Плата установлена внутри самодельного корпуса, который предотвращает воздействие дождя и других внешних факторов.

Упрощенный код для каждого из датчиков приведен ниже. Более точный код, который считывает значения с точностью до одной десятой, показан на сайте Питера Андерсона . Его код используется в окончательном варианте метеостанции.

Датчик температуры обеспечивает точность ± 0.5 °C. Датчик влажности обеспечивает точность до ± 2%, так что это не очень важно, сколько знаков доступно после запятой!

Пример участка из программного обеспечения, работающего на ПК.

Температура

Main: readtemp B.6, b1 ; read value into b1 if b1 > 127 then neg ; test for negative sertxd (#b1, cr, lf) ; transmit value to PE terminal pause 5000 goto main neg: b1 = b1 - 128 ; adjust neg value sertxt ("-") ; transmit negative symbol sertxt (#b1, cr, lf) ; transmit value to PE terminal pause 5000 goto main

Влажность

Main: readadc B.7,b1 ; read humidity value b1 = b1 - 41 * 100 / 157 ; change to %RH sertxd (#b1, "%", cr, lf) pause 5000 ; wait 5 seconds goto main

Расчет показаний датчика влажности

Расчеты взяты из документации датчика Honeywell HIH-3610. На графике показывана стандартная зависимость при 0 °C.

Напряжение с датчика измеряется на входе АЦП (B.7) микроконтроллера Picaxe 18M2. В коде, показанном выше, значение, которое представлено в виде числа от 0 до 255 (т.е. 256 значений), хранится в переменной b1.

Наша схема питается от 5В, так что каждый шаг АЦП равен:
5/256 = 0.0195 В.

На графике видно начально значение АЦП 0.8 В:
0.8 / 0.0195 = 41

Взяв значения из графика, наклон графика (с учетом смещения) примерно:
Напряжение выхода / % относительной влажности или
(2.65 - 0.8) / 60 = 0.0308 В в% RH
(В документации 0.0306)

Рассчитаем кол-во шагов АЦП на 1% влажности:
(В на % RH) / (шаг АЦП)
0.0308 / 0.0195 = 1.57

% RH = значение с АЦП - смещение АЦП / (шаги АЦП в % RH), или
% RH = значение с АЦП - 41 / 1.57

Итоговая формула расчет для микроконтроллера будет выглядеть: % RH = значение с АЦП - 41 * 100/157

Защитный корпус

Начните с разрезания каждой панели на две части. Планки на одной части будут крепко прикреплены с двух сторон, а на второй части только с одной стороны. Не выбрасывайте эти части - они используются.

К целым частям прикрепите два деревянных бруска 20мм х 20мм сверху и с низу, и прикрутите к ним другие части.

Обрежьте одну из частей с одной целой стороной по размеру и приклейте ее к внутренней стороне одной из сторон. Убедитесь, что планки приклеены так, что образуют вместе "^" форму. Сделайте так со всеми сторонами.

Измеритель скорости и направления ветра

Механическая часть

Датчики скорости и направления ветра представляют собой сочетание механических и электронных компонентов. Механическая часть идентична для обеих датчиков.

12мм вставка из фанеры (marine ply) находится между трубой из ПВХ и диском из нержавеющей стали в верхнем конце трубы. Подшипник приклеен к диску из нержавеющей стали и удерживается нержавеющей пластиной.

Как только все будет полностью собрано и настроено, открытые места герметизируются герметиком для водонепроницаемости.

Остальные три отверстия на фотографии предназначены для лопастей. Лопасти длиной 80 мм дают радиус поворота 95мм. Чашки 50 мм в диаметре. Для них я использовал обрезанные флаконы от одеколона, которые имеют почти сферическую форму. Я не уверен в их надёжности, поэтому сделал их легкозаменяемыми.

Электронная часть

Электроника для датчика скорости ветра состоит только из транзисторного ключа, фотодиода и двух резисторов. Они монтируются на небольшой круглой ПП диаметром 32мм. Они установлены в трубе свободно, чтобы влага в случае её попадания стекала вниз не задевая электронику.

Анемометр - один из трех датчиков, который необходимо откалибровать (два других – счетчик осадков и датчик атмосферного давления)

Фотодиод обеспечивает два импульса за один оборот. В простой «последовательной» системе, к которой я стремился (все датчик опрашиваются поочередно), должен быть компромисс между длиной времени, затрачиваемого на опрос каждого датчика (в данном случае, подсчет импульсов) и отзывчивость системы в целом. В идеале, на полный цикла опроса всех датчиков должно уйти не более 2-3 секунд.

На фото выше проверка датчика при помощью мотора с регулируемыми оборотами.

; LCD-specific commands shown in blue hsersetup B9600_4, %10000 ; Use LCD Pin 1, no hserin hserout 0, (13) : pause 100 ; Initialize LCD hserout 0, (13) : pause 100 hserout 0, (13) : pause 100 pause 500 hserout 0, ("ac1", 13) ; Clear display pause 50 hserout 0, ("acc", 13) hserout 0, ("ac81", 13, "adcount: ", 13) ; Print the headings pause 10 hserout 0, ("ac95", 13, "adpulsin: ", 13) ; Print the headings pause 10 do count C.2, 1000, w0 ; Count the pulses (two per rev) w1 = 0 for b8 = 1 to 2 ; Measure pulse length twice pulsin C.2, 1, w2 ; per rev and... w1 = w1 + w2 next w1 = w1 / 2 ; ...calculate average hserout 0, ("ac89", 13, "ad ", #w0, " ", 13) ;Print the count value hserout 0, ("ac9d", 13, "ad ", #w1, " ", 13) ;Print the pulse-length value pause 100 loop

Я хотел откалибровать его при движении на автомобиле, но на это не было времени. Я живу в относительно плоской местности с аэропортом в нескольких километрах рядом, поэтому я калибровал датчик, сравнивая мои показания скорости ветра с показаниями аэропорта.

Если бы мы имели 100% КПД и лопасти вертелись-бы со скоростью ветра, то:
Радиус ротора = 3.75"
Диаметр ротора = 7.5" = 0.625 фута
Длина окружности ротора = 1.9642 фута

1 фут/мин = 0.0113636 м/ч,
1.9642 фут/мин = 1 об = 0.02232 м/ч
1 м/ч = 1 / 0.02232 об

1 м/ч = 44.8 об
? м/ч = об / 44.8
= (об/мин * 60) / 44.8

Поскольку за поворот выходит два импульса
? м/ч = (импульсов в секунду * 30) / 44.8
= (импульсов в секунду) / 448

Датчик направления ветра - механическая часть

В датчике направления ветра, вместо алюминиевой пластины используется магнит, а вместо оптоэлектронного узла - специальная микросхема AS5040 (магнитный энкодер).

На фото ниже показан 5мм магнит, установленный на торце центрального винта. Выравнивание магнита относительно микросхемы очень важно. Магнит должен быть точно по центру на высоте около 1мм над микросхемой. Как только все будет точно выровнено, датчик будет работать правильно.

Датчик направления ветра - электронная часть

Существуют различные схемы для измерения направления ветра. В основном они состоят либо из 8 герконов расположенных под углом 45 градусов с интервалом вращающегося магнита или потенциометра который может полностью проворачиваться.

Оба метода имеют свои преимущества и недостатки. Основным преимуществом является то, что они оба просты в реализации. Недостатком является то, что они подлежат износу - особенно потенциометры. Альтернативой использованию герконов будет использовать датчика Холла для решения механического износа, но они по-прежнему ограничиваются 8 различными позициями... В идеале, я хотел бы попробовать что-то другое и в конечном счете решил о - поворотном магнитном датчике IC. Хотя это устройство для поверхностного монтажа (которого я стараюсь избегать), оно имеет ряд преимуществ, которые делают ее использование привлекательным!

Он имеет несколько различных форматов вывода, два из которых наиболее подходит для нашей цели. Наилучшая точность достигается с помощью SSI интерфейса. AS5040 выдает импульсы длиной от 1 мкс при 0° и до 1024 мкс при 359,6°

Проверка калибровки датчика направления ветра:

Do readadc10 B.3, w0 ;Read from AS5040 magnetic bearing pause 100 w0 = w0 * 64 / 182 ; Convert to 0 - 360 (degrees) debug ; Display in Prog/Edit debug window loop

Измеритель уровня осадков

Насколько это возможно, я сделал дождемер из пластика и нержавеющей стали, основание сделано из алюминия толщиной 3 мм для жесткости.

В измерителе уровня осадков есть две ведерка. Каждое ведерко вмещает до 6 мл воды до его смещения центра тяжести, которое заставляет его вылить воду в ёмкость и подать сигнал на датчик. Когда ведро опрокидывается, алюминий флаг проходит через оптический датчик, посылающий сигнал на электронику наружного блока.

На данный момент, я оставил его с прозрачными стенками (потому что интересно наблюдать это работает!). Но я подозреваю, что нужно покрасить его белой краской, чтобы отражать тепло летом, во избежание испарения. Я не мог найти маленькую воронку, поэтому пришлось сделать её самому. Обратите внимание на проволоку внутри воронки и по центру желоба. Это поможет остановить поверхностное натяжение воды в воронке и помогает капать воде. Без проволоки, дождь имел бы тенденцию к "водовороту", и его траектория была-бы непредсказуемой

Оптодатчики крупным планом:

Электронная часть дождемера

Из-за случайного характера работы датчика, программное прерывание в микроконтроллере наружного блока, казалось, логичный подход. К сожалению, некоторые команды программы, отключают механизм прерываний в то время, как они выполняются, т.о. есть вероятность, что сигнал придет в никуда. По этим причинам, дождемер имеет собственный микроконтроллер 08М Picaxe.

Использование отдельного чипа позволяет использовать его для создания достаточно точной 1-часовой задержки для того, чтобы считать ведра в час.

Калибровка

Picaxe 18м2 получает текущее количество ведерок в час и выводит его на дисплей и компьютер.

В качестве отправной точки, я использую следующие данные:
Воронка диаметров 120мм и емкость площадью 11,311мм2
1 мм дождя = 11,311мм3 или 11,3 мл.
Каждое ведро это 5,65 мл. Таким образом, 2 ведра 2 х 5,65 = 11,3 мл (или 1 мм) осадков. Одно ведро = 0,5 мм осадков.

Для сверки, я купил дешевый стакан для измерения осадков.

Для вышеприведенной схемы и схемы 08М Picaxe для датчика используется одна и та же топология печатной платы. Устройство питается от аккумулятора 12V 7Ah через стабилизатор 7805.
Я использовал набор RF Connect kit для беспроводной связи на 433 МГц. Комплект содержит пару специально запрограммированных PIC контроллеров. Комплект беспроводных модулей в ходе испытаний зарекомендовал себя как достаточно надежный.

На ПП установлен 08М Picaxe и 18м2. Каждый из них имеет свой собственный разъем программирования. Отдельные разъемы, каждый со своим +5 В, предназначены для каждого датчика - за исключением температуры и влажности.

Обратите внимание, что я нарисовал чертёж в Paintshop Pro поэтому я не могу гарантировать точность расстояния между выводами.

Внутренний блок

Во внутреннем блоке используетя 18м2 Picaxe, датчик давления и ЖК-дисплей. Также есть стабилизатор напряжения 5В.

Датчик давления

После нескольких неудачных попыток, я остановился на MPX4115A. Хотя другие датчики имеют диапазон измерения немного больше, они труднодоступны. Кроме того, другие датчики, как правило, работают от 3,3В и требуют дополнительный стабилизатор. MPX4115A выдает аналоговое напряжение от 3,79 и до 4,25В пропорционально давлению. Хотя это почти достаточное разрешение для обнаружения 1 мбар изменения давления, после некоторого обсуждения на форуме, я добавил АЦП MCP3422. Он может работать в 16-битном режиме (или выше) по сравнению с 10-битном режиме Picaxe. MCP3422 может быть связан (как в нашей схеме) в дифференциальный режим с аналоговым входом от датчика. Основным преимуществом является то, что это позволяет корректировать выход датчика, тем самым легко компенсировать ошибки MPX4115A и обеспечить простой способ калибровки датчика.

MPC3422 на самом деле имеет два дифференциальных входа, но так-как один не используется они замкнуты. Выход из MCP3422 имеет интерфейс I2C и соединяется с SDA и SCL контактам на 18м2 Picaxe – выводы B.1 и B.4 соответственно. С моей точки зрения, единственный недостаток в использовании MCP3422 том, что это небольшое устройство для поверхностного монтажа, но я его припаял к адаптеру. В дополнение к I2C интерфейсу MCP3422 18м2 просто обрабатывает поступающие данные из 433МГц беспроводной приемник, выводит данные на дисплей и передает данные на ПК. Для того чтобы избежать ошибок внутреннего блока когда компьютер не работает, нет никаких ответов от ПК. Внутренний блок передает данные и идет дальше. Он передает данные приблизительно в 2-секундным интервалом, чтобы потери данных быстро компенсировались следующий раз. Я использовал незадействованные порты на 18м2 для подключения кнопки на передней панели. Переключатель S1 (вход С.5) используется для включения подсветки ЖК-дисплея. Переключатель S2 (вход C.0) сбрасывает значение давления (мбар) на ЖК-дисплее. Переключатель S3 (вход C.1) переключает осадки отображаемые на ЖК-дисплее между общим в предыдущий час и текущими. Кнопки необходимо удерживать более 1 секунды для их реакции.

Сборка внутреннего блока

Как и в печатной плате для наружного блока, я нарисовал макет вручную с помощью Paintshop Pro, так что в расстояниях могут быть ошибки

Плата немного больше, чем это необходимо, чтобы вписаться в пазы в алюминиевом корпусе.
Я сознательно сделал разъем для программирования немного "внутрь" от края платы, чтобы предотвратить его прикосновение к корпусу. Вырез для ЖК-дисплея производится высверливание и подгонкой до точных размеров.

На фото показано всё уже установленное в корпус.

Штырьки на плате делают сложным её установку в корпус, поэтому мне пришлось отпаять их и припаять дисплей к плате проводами.

Внешний блок - код Picaxe

; ================================================================== ; Main 18M2 code for the Picaxe Weather Station Outdoor (Transmitter) Unit ; Decimal precision Humidity & Temperature routines, ; copyright, Peter H Anderson, Baltimore, MD, Jan, "04 ; ; ================================================================== #Picaxe 18M2 Symbol HValue = w0 Symbol HighWord = w1 Symbol LowWord = w2 Symbol RH10 = w3 Symbol HQuotient = b0 Symbol HFract = b1 Symbol X = b0 Symbol aDig = b1 Symbol TFactor = b2 Symbol Tc = b3 Symbol SignBit = b4 Symbol TValue = w4 Symbol TQuotient = b10 Symbol TFract = b11 Symbol TempC_100 = w6 Symbol MagDir = w7 Symbol MagDirLo = b14 Symbol MagDirHi = b15 Symbol WindSpeed = w8 Symbol WindSpeedLo = b16 Symbol WindSpeedHi = b17 Symbol ThisHour = b18 Symbol LastHour = b19 Symbol RainRequest = b20 ; Hardware Symbol HumidRaw = B.7 Symbol TempRaw = B.6 Symbol DirRaw = B.3 Symbol Speed = B.0 do ; Read Humidity ReadADC10 HumidRaw, HValue ;Get Humidity (HValue) HighWord = 1613 ** HValue ; calculate RH LowWord = 1613 * HValue RH10 = LowWord / 1024 LowWord = Highword * 64 RH10 = RH10 + LowWord RH10 = RH10 - 258 pause 100 ; Read temperature Readtemp12 TempRaw, TValue ; Get temperature SignBit = TValue / 256 / 128 if SignBit = 0 then positive ; It"s negative so TValue = TValue ^ $ffff + 1 ; take twos comp positive: TempC_100 = TValue * 6 ; TC = value * 0.0625 TValue = TValue * 25 / 100 TempC_100 = TempC_100 + TValue TQuotient = TempC_100 / 100 TFract = TempC_100 % 100 / 10 X = TQuotient / 10 ; Calculate temperature correction factor for Humidity if SignBit = 0 then SignBit = " " else SignBit = "-" endif if SignBit = "-" then X = 4 - X else X = X + 4 endif GoSub TempCorrection ; compensate RH HQuotient = RH10 / 10 ; Calculate RH Quotient and... HFract = RH10 % 10 ; ...decimal place. if HQuotient > 99 then ; Over range HQuotient = 99 HFract = 9 endif if HQuotient > 127 then ; Under range HQuotient = 0 HFract = 0 endif ; Read AS540 magnetic encoder for wind direction readadc10 DirRaw, MagDir ; Read from AS5040 magnetic bearing pause 100 ; Read rpm from windspeed counter count Speed, 1000, WindSpeed ; Every 30th cycle (approx 1 minute), request rain gauge data from 08M inc RainRequest if RainRequest >= 30 then high C.1 serin , C.0, N2400, ("r"), LastHour, ThisHour ; Rain counters low C.1 RainRequest = 0 endif ; Send data to Indoor Unit in 8 byte blocks ; First group needs no calibration so calculations are done here first. ; Second group will need "tweaking" - more easily done at indoor end. serout C.2, N2400, ("t", SignBit, TQuotient, TFract, HQuotient, HFract, "A", "B") pause 100 serout C.2, N2400, ("m", MagDirHi, MagDirLo, WindSpeedHi, WindSpeedLo, LastHour, ThisHour, "C") loop TempCorrection: Lookup X, (87, 89, 91, 93, 95, 97, 99, 101, 103, 106, 108, 110, 113, 116, 119, 122, 126), TFactor " -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120 if TFactor < 100 then aDig = TFactor / 10 RH10 = RH10 * aDig / 10 TFactor = TFactor % 10 aDig = TFactor RH10 = RH10 * aDig / 100 + RH10 else TFactor = TFactor % 100 aDig = TFactor / 10 RH10 = RH10 * aDig / 10 + RH10 TFactor = TFactor % 10 aDig = TFactor RH10 = RH10 * aDig / 100 + RH10 endif return

Использовано памяти = 295 байт из 2048

Счетчик количества осадков - 08M код

#picaxe 08M Symbol ThisHour = b2 ; Store the current sensor count in b2 Symbol LastHour = b3 ; Save the previous hour"s count in b3 ;Hardware definitions Symbol DataRequest = pin3 Symbol BucketSensor = pin4 setint %00010000, %00010000 ; pin4 is interrupt pin main: for w0 = 1 to 60000 ; Loop for 1 hour pause 60 next LastHour = ThisHour ; Update Last hour"s count with ThisHour = 0 ; current hour & reset current hour goto main ; Do the next hour interrupt: setint %00010000, %00010000 ; Re-instate interrupt if DataRequest = 1 then ; Was the interrupt from the 18M2 ? serout 2, N2400, ("r", LastHour, ThisHour) ; Yes, so send previous hour"s count & curent count. do: loop while DataRequest = 1 ; Wait until 18M2 stops requesting before continuing endif if BucketSensor = 1 then ; Was the interrupt from the rain sensor? inc ThisHour ; Yes, so increment bucket-tip count do: loop while BucketSensor = 1 ; Make sure flag has cleared sensor before continuing endif return

Внутренний блок - код Picaxe

;============================================================================ ; Main Indoor (Receiver) Program. ; ; Receives data from outdoor unit, displays on LCD and passes data on to PC ; Also measures the barometric pressure (thanks to "matherp") ;============================================================================ #PICAXE 18M2 ; Variable Definitions (b2 to b5 are re-used for mBar code when they become available) symbol Quotient = b2 symbol Fract = b3 symbol SignBit = b4 symbol Humidity = b5 symbol HFract = b14 symbol Dir = w5 symbol DirLo = b10 symbol DirHi = b11 symbol Speed = w3 symbol SpeedLo = b6 symbol SpeedHi = b7 symbol RainCountThisHour = b12 symbol RainCountLastHour = b13 symbol LCDRainWhole = b21 symbol LCDRainFract = b22 symbol LastOrThis = b23 ; MCP3422 ADC variables symbol mb900 = 17429 ; ADC reading for 900Mbar, then add 72.288 counts per mbar symbol adj0 = 72 symbol mBarADCValue = w0 symbol adj1 = b4 ; used to add 1 count every 4 mbar symbol adj2 = b5 ; used to add 1 count every 24 mbar symbol mBar = w4 ; Housekeeping variables symbol lastmbar = w8 ; Remember previous mBar reading symbol RiseFall = b18 ; Indicator for pressure rising or falling (up arrow or down arrow) symbol active = b19 ; Telltale shows activity on LCD screen symbol LCD_Status = b20 ; Is LCD Backlight on or off (0 or 1)? ; Hardware Definitions symbol Wireless = C.7 ; Incoming connection from Wireless receiver/decoder symbol Computer = C.2 ; Outgoing serial connection to computer symbol LCD = pinC.5 ; Front-panel button to blank / unblank LCD backlight symbol ClearRiseFall = pinC.0 ; Front-panel button to clear pressure "rising / falling" indicator symbol LastOrThisSwitch = pinC.1 ; Front-panel button to display current or previous hour"s rainfall Init: hsersetup B9600_4, %10000 ; Use LCD Pin 1, no hserin ; ByVac 20x4 IASI-2 Serial LCD hi2csetup i2cmaster, %11010000, i2cfast, i2cbyte ; Initialize I2C for MCP3422 ADC chip. hi2cout (%00011000) ; set MCP3422 for 16 bit continuous conversion pause 500 hserout 0, (13) : pause 100 ; Initialize LCD hserout 0, (13) : pause 100 hserout 0, (13) : pause 100 pause 500 hserout 0, ("ac50", 13) hserout 0, ("ad", 32, 32, 32, 32, 49, 42, 36, 32, 13) ; Define down arrow character (char 10) hserout 0, ("ac1", 13) ; Clear display pause 50 hserout 0, ("acc", 13) ; Hide cursor hserout 0, ("ac81", 13, "ad ", $df, "C", 13) ; Print the headings hserout 0, ("ac88", 13, "admBar", 13) hserout 0, ("ac8e", 13, "adRH %", 13) hserout 0, ("acd5", 13, "ad", "dir", 13) ; Print footings hserout 0, ("acdc", 13, "ad", "mph", 13) ; hserout 0, ("ace3", 13, "ad", "mm", 13) lastmbar = 0 ; Initialize variables LastOrThis = "c" ;========================================================================== ; Main Loop ;========================================================================== main: ; Check if a front-panel switch is pressed. The Picaxe interrupt mechanism is ; almost permanently disabled due to the large number of serin and serout commands ; so sprinkling the program with "gosub switches" to check the switch status is more ; effective that interrupts. gosub switches ; Get first group of values from outdoor unit via 433MHz radio link. serin Wireless, N2400, ("t"), SignBit, Quotient, Fract, Humidity, HFract, b15, b15 ; Flash "telltale" on LCD to indicate activity and successful "serin" from wireless. gosub telltale ; Display first group on LCD hserout 0, ("acc0", 13) hserout 0, ("ad", SignBit, #Quotient, ".", #Fract, " ", 13) hserout 0, ("acce", 13) hserout 0, ("ad", #Humidity,".", #HFract, " ", 13) gosub switches ; Send first group to computer COM port ; Each group has a start identifier, data and an end identifier: ; Start = "xS", End is "xE" eg Wind Start is WS, Wind End is WE ; Multiple data are separated by a single space character. serout Computer, N2400, ("TS", SignBit, #Quotient," ", #Fract, "TE") ; Temperature serout Computer, N2400, ("HS", #Humidity, " ", #HFract, "HE") ; Humidity ; Check switches again and at regular intervals throughout program. gosub switches ; Get second group of values from outdoor unit radio link. serin Wireless, N2400, ("m"), DirHi, DirLo, SpeedHi, SpeedLo, RainCountLastHour, RainCountThisHour, b15 gosub telltale Speed = Speed * 300 / 448 ; Estimated conversion from pulses/sec to mph Dir = Dir * 64 / 182 ; Convert 0 - 1023 to 0 - 359 degrees ; To preserve precision, rain gauge has to be calibrated by adjusting the ; mechanical stops on the tipping bucket so that 1 tip is 0.5 mm of rain. if LastOrThis = "c" then ; Decide whether to display previous hour"s LCDRainWhole = RainCountThisHour / 2 ; rainfall or the current hour"s. LCDRainFract = RainCountThisHour * 5 // 10 else LCDRainWhole = RainCountLastHour / 2 ; LCDRainFract = RainCountLastHour * 5 // 10 endif ; Send second group to LCD hserout 0, ("ac95", 13) hserout 0, ("ad", #Dir, " ", 13) hserout 0, ("ac9c", 13) hserout 0, ("ad", #Speed, " ", 13) hserout 0, ("aca1", 13) hserout 0, ("ad", LastOrThis, " ", #LCDRainWhole, ".", #LCDRainFract, " ", 13) ; Send second group to computer COM port serout Computer, N2400, ("WS", #Dir," ", #Speed, "WE") ; Wind serout Computer, N2400, ("RS", #RainCountLastHour," ", #RainCountThisHour, "RE") ; Rain gosub switches ; Thanks to "matherp" on the Picaxe forum for the mbar code loop: ; Measuring atmosperic pressure with a MPX4115A ; Analogue to digital conversion using a MCP3422 ; MPX output to V+, 2.5V to V- ; ADC in 16 bit mode hi2cin (b1,b0,b2) ; Read in the ADC reading and the status byte from MCP3422 adj1 = 0 adj2 = 0 w1 = mb900 mbar = 900 do while mBarADCValue > w1 ; mBarADCValue = w0 = b1:b0 inc mbar w1 = w1 + adj0 inc adj1 if adj1 = 4 then inc adj2 w1 = w1 + 1 adj1 = 0 endif if adj2 = 6 then w1 = w1 + 1 adj2 = 0 endif loop gosub switches gosub telltale ; Send pressure to computer COM port serout Computer, N2400, ("PS:", #mbar, "PE") ; Initialize previous pressure reading (lastmbar) if not already set if lastmbar = 0 then lastmbar = mbar RiseFall = " " endif ; Display up arrow or down arrow if pressure has changed if mbar > lastmbar then RiseFall = "^" ; ^ lastmbar = mbar endif if mbar < lastmbar then RiseFall = 10 ; Custom LCD character. Down arrow lastmbar = mbar endif hserout 0, ("acc7", 13) hserout 0, ("ad", RiseFall, #mbar, " ",13) gosub telltale goto main ; Check if one of the front panel buttons is pressed. switches: if LCD = 1 then ; LCD Backlight on/off Button is pressed if LCD_Status = 0 then ; Backlight is on so... hserout 0, ("ab0", 13) ; Turn it off LCD_Status = 1 else hserout 0, ("ab1", 13) ; Else turn it on. LCD_Status = 0 endif do: loop while LCD = 1 ; Don"t return while button is pressed endif if ClearRiseFall = 1 then ; Pressure rise/fall button is pressed RiseFall = " " ; Clear indicator and... hserout 0, ("acc7", 13) ; ... update display. hserout 0, ("ad", RiseFall, #mbar, " ",13) do: loop while ClearRiseFall = 1 endif if LastOrThisSwitch = 1 then ; Rain Previous Hour / Last Hour button. if LastOrThis = "c" then LastOrThis = "p" LCDRainWhole = RainCountLastHour / 2 ; Recalculate values and re-display to LCDRainFract = RainCountLastHour * 5 // 10 ; give visual confirmation of button-press else LastorThis = "c" LCDRainWhole = RainCountThisHour / 2 ; LCDRainFract = RainCountThisHour * 5 // 10 endif hserout 0, ("aca1", 13) hserout 0, ("ad", LastOrThis, " ", #LCDRainWhole, ".", #LCDRainFract, " ", 13) do: loop while LastOrThisSwitch = 1 endif return ; Flash "tell-tale" on LCD display to show activity telltale: if active = "*" then active = " " else active = "*" endif hserout 0, ("ac80", 13, "ad", active, 13) return

Использовано памяти = 764 байт из 2048

Программное обеспечение для ПК

Программное обеспечение, работающее на ПК было написано с использованием Borland Delphi 7. Оно довольно примитивно в его нынешнем виде, но это, по крайней мере, показывает связь Picaxe с компьютером.

Графики могут быть выбраны для показа в период 1 час или 12 часов. Графики можно прокручивать вперёд-назад с помощью мышки. Они могут быть сохранены. Для этого необходимо кликнуть по ним правой кнопкой мыши и указать имя и файл значения. Можно настроить ограниченный набор APRS данных, записываемых раз в минуту на одну строку файла APRS.TXT и которые сохраняются в той же папке, где находится Weather.exe. Отмечу, что температура в градусах по Фаренгейту и осадки в 1/100ths на дюйм.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Датчик температуры и относительной влажности воздуха
Датчик температуры

DS18B20

1 В блокнот
Датчик влажности HIH-3610 1 В блокнот
Резистор

4.7 кОм

1 В блокнот
Измеритель скорости и направления ветра
Фототранзистор ИК 1 В блокнот
Светодиод ИК 1 В блокнот
Резистор

220 Ом

1 В блокнот
Резистор

4.7 кОм

1 В блокнот
Магнитный энкодер 1 В блокнот
Электролитический конденсатор 10 мкФ 4 В блокнот
Конденсатор 100 нФ 1 В блокнот
Резистор

4.7 кОм

1 В блокнот
Резистор

10 кОм

1 В блокнот
Измеритель уровня осадков
МК PICAXE

PICAXE-08M

1 В блокнот
Выпрямительный диод

1N4148

2 В блокнот
Конденсатор 100 нФ 1 В блокнот
Резистор

4.7 кОм

1 В блокнот
Резистор

10 кОм

4 В блокнот
Резистор

22 кОм

1 В блокнот
Резистор

220 Ом

2 В блокнот
Светодиод ИК 1

– Влажность:

Диапазон измерения 20÷90%.

Погрешность ±5%.

Разрешающая способность 1%.

– Температура:

Диапазон измерения 0÷50 о С.

Погрешность ±2 о С.

Разрешающая способность 1 о С.

4. Измерение давления и температуры датчиком BMP-180 .

– Давление:

Диапазон измерения 225÷825 мм рт. ст.

Погрешность ±1 мм рт. ст.

Разрешающая способность 1 мм рт. ст.

– Температура:

Диапазон измерения -40,0÷85,0 о С.

Погрешность ±1 о С.

Разрешающая способность 0,1 о С.

5. Циклическая анимированная смена показаний.

6. Режим "кукушки". Ежечасный короткий звуковой сигнал. Если активирован и только в дневное время.

7. Озвучивание нажатия на кнопки. Короткий звуковой сигнал только в дневное время.

8. Сохранение настроек в энергонезависимой памяти микроконтроллера.

Настройка.

1. Вход в настройки и листание меню производится кнопкой MENU .

2. Переключение параметра для настройки в пределах одной страницы меню кнопкой SET .

3. Установка параметра кнопками PLUS / MINUS . Кнопки работают по одиночному нажатию, а при удержании производится ускоренная установка.

4. Устанавливаемый параметр мигает.

5. Через 10 сек от последнего нажатия на кнопки прибор перейдет в основной режим, настройки запишутся в память.

6. Страницы меню.

CLOC :

– сброс секунд.

– установка минут.

– установка часов.

– установка ежесуточной коррекции точности хода. В старшем разряде символ c . Диапазон установки ±25 сек.

ALAr :

– минуты срабатывания будильника.

– часы срабатывания будильника.

– активация будильника. В старшем разряде символ A . В младших On , если работа будильника разрешена, OF – если запрещена.

– активация режима "кукушки". В старших разрядах символы cu . В младших On , если работа "кукушки" разрешена, OF – если запрещена.

DiSP :

– продолжительность индикации времени. На индикаторе d xx . Диапазон установки

– продолжительность индикации влажности. На индикаторе H xx . Диапазон установки 0 ÷ 99 сек. Если установлен 0, то параметр отображаться не будет.

– продолжительность индикации температуры, измеренной датчиком влажности. На индикаторе tHxx . Диапазон установки 0 ÷ 99 сек. Если установлен 0, то параметр отображаться не будет.

– продолжительность индикации давления. На индикаторе P xx . Диапазон установки 0 ÷ 99 сек. Если установлен 0, то параметр отображаться не будет.

– продолжительность индикации температуры, измеренной датчиком давления. На индикаторе tPxx . Диапазон установки 0 ÷ 99 сек. Если установлен 0, то параметр отображаться не будет.

– скорость анимации. В старшем разряде символ S . Диапазон установки 0 ÷ 99. Чем меньше величина, тем выше скорость.

LiGH :

niGH - установки ночного режима.

– минуты включения ночного режима.

– часы включения ночного режима.

– яркость индикатора в ночном режиме. В старшем разряде символ n . Диапазон установки 0 ÷ 99. Яркость индикатора соответствует ночному режиму.

dAY - установки дневного режима.

– минуты включения дневного режима.

– часы включения дневного режима.

– яркость индикатора в дневном режиме. В старшем разряде символ d . Диапазон установки 0 ÷ 99. Яркость индикатора соответствует дневному режиму.

Работа прибора.

1. В основном режиме происходит циклическая смена информации на индикаторе. Установлена следующая последовательность вывода: время – влажность (в старшем разряде символ H ) – температура измеренная датчиком влажности – давление (в старшем разряде символ P ) – температура измеренная датчиком давления. Если продолжительность отображения какого-либо параметра установлена в 0, то на индикатор он выводиться не будет.

2. Из основного режима можно переключить индикацию кнопками PLUS /MINUS .

3. В случае ошибки считывания данных с датчика DHT11 при индикации температуры и влажности на индикатор выводятся прочерки.

4. Если будильник активирован (см. настройки), при отображении времени в младшем разряде включена точка. В заданное время включается звуковой сигнал - ежесекундные двойные сигналы в течении одной минуты. Звуковой сигнал может быть досрочно отключен нажатием на любую кнопку. При срабатывании будильника на индикатор в течении 30 секунд выводится время.

5. Ежесуточно (в 0 часов 0 минут и 30 сек) производится цифровая коррекция времени. , DS1307 .

4. Тип индикатора (общий анод или катод) выбирается джампером. Если джампер установлен, то выбран индикатор с общим анодом.

5. На схеме показаны два индикатора, устанавливается только одни.

6. Пищалка должна быть со встроенным генератором. В зависимости от ее тока потребления, возможно понадобится установка усилителя (транзисторного ключа).

В ходе обсуждений и доработок в теме форума появилось несколько разных версий этого проекта.

По возможности обновленные материалы будут выкладываться здесь. Краткие описания в архивах

Благодарность studiotandem за подготовку материалов и тестирование прошивок.

В этом проекте будет реализована комнатная настольная метеостанция своими руками. Вы можете подумать, что таких проектов было уже много, но этот проект будет базироваться на новом чипе ESP32, также он будет оснащен новым датчиком BME280, этот датчик измеряет температуру, влажность и атмосферное давление.

Когда настольная метеостанция будет включена, она подключится к WiFi и запросит свежий прогноз погоды для заданной местности. Затем она отобразит его, наряду с данными датчика, на 3,2″ дисплее. Данные с датчика будут обновляться каждые 2 секунды, а данные о погоде — каждый час. Как вы видите, в этом проекте мы будем использовать последние технологии, доступные на сегодняшний день. Если у вас есть опыт в DIY, то проект займёт у вас всего 5 минут.

Если вы новичок, то просмотрите видео, в котором разобраны нюансы сборки.

Шаг 1: Компоненты станции

Чтобы построить свою станцию, нам понадобятся:

  • Плата ESP32 (ссылка)
  • Датчик BME280 I2C (ссылка)
  • Дисплей 3.2” Nextion (ссылка)
  • Небольшая макетная плата (ссылка)
  • Немного проводов (ссылка)

Стоимость проекта будет варьироваться в районе $30.

Вместо модуля ESP32 можно использовать более дешевый чип ESP8266, но я решил использовать ESP32, чтобы получить представление об этом новом модуле и посмотреть, как он работает.

Шаг 2: ESP32


Это первый проект, который я собрал, используя чип ESP32. Если вы не знакомы с ним, чип ESP32 — это следующее поколение популярного чипа ESP8266. ESP32 предоставляет два 32-процессных ядра, работающих на 160MHz,большой объем памяти, WiFi, Bluetooth и много других функций. И это всего за $7.

Посмотрите видео с моим детальным описанием этой платы. Оно поможет понять, почему этот чип изменит наш подход к созданию вещей.

Шаг 3: Дисплей Nextion

Также, это первый проект, в котором я использовал тачевый дисплей Nextion. Это новый вид дисплеев, который оснащен собственным ARM-процессором, позволяющим настраивать дисплей и создавать графический интерфейс. Поэтому мы можем использовать его с любым микроконтроллером и получать хорошие результаты.

Шаг 4: Датчик BME280


Датчик BME280 — это новейший сенсор от Bosch. Он может измерять температуру, влажность и атмосферное давление. Нам нужен всего один датчик, чтобы собрать целую погодную станцию.

В дополнение, этот датчик очень маленький и он прост в управлении. Датчик управляется через интерфейс I2C, так что взаимодействие с Ардуино будет очень простым — для стабильной работы нам нужно будет запитать его и припаять всего пару проводов.

Также существует множество библиотек, разработанных для этого датчика, так что в нашем проекте мы можем использовать любую из них.

Заметка: нам нужен датчик BME280. Существует также датчик BMP280, который не измеряет влажность воздуха. Проверьте название перед тем, как купите датчик.

Шаг 5: Соединяем части вместе





Соединение модулей достаточно простое, вы можете увидеть это на приложенной схеме.

Так как датчик BME280 использует интерфейс I2C, нам нужно всего два провода, чтобы соединить его с ESP32. Я соединил датчик с пинами 26 и 27. В теории, каждый цифровой пин платы ESP32 может быть использован для взаимодействия с периферией, работающей на I2C. На практике, я обнаружил, что некоторые пины не работают, так как зарезервированы для других целей. Пины 26 и 27 работают без перебоев.

Чтобы отправить данные на дисплей, нам нужно соединить провод с пином TX0 на ESP32. Мне пришлось согнуть пин на 90 градусов, чтобы соединить его с дисплеем, так как плата ESP32 оказалась великоватой для макетной платы.

После сборки всех частей, нам нужно залить код на ESP32, а также залить интерфейс на дисплей Nextion. Если у вас возникли трудности при прошивке ESP32, зажмите кнопку BOOT сразу после нажатия кнопки загрузки в ИДЕ Ардуино.

Чтобы залить интерфейс на дисплей, скопируйте файл WeatherStation.tft, который будет приложен ниже, на пустую карту SD. Поместите карту в слот, располагающийся на задней части дисплея. После подачи питания, интерфейс будет загружен в дисплей — можно выключить его и извлечь карту, затем включить заново.

После успешной загрузки кода, станция соединится с WiFi, запросит данные о погоде с сайта openweathermap.org, а также отобразит данные с датчика. Давайте теперь посмотрим на программную часть проекта.

Шаг 6: Код проекта



Чтобы спарсить погодные данные, нам понадобится библиотека JSON для Ардуино. Также нам понадобится библиотека для датчика.

Рассмотрим код. Сначала нам нужно отправить SSID и пароль нашей сети WiFi. Затем нам нужно ввести ключ API с сайта operweathermap.org. Чтобы создать собственный ключ, нужно зарегистрироваться на сайте. Получение текущей погоды бесплатно, но сайт предлагает больше услуг, если вы хотите платить за них. Затем нам нужно найти ID нашего местонахождения. Найдите ваш населённый пункт и скопируйте его ID из URL.

Затем скопируйте ваш ID в переменную CityID. Также скопируйте высоту над уровнем моря для вашего населённого пункта. Это необходимо для того, чтобы барометр показывал точные данные.

Const char* ssid = "yourSSID"; const char* password = "yourPassword"; String CityID = "253394"; //Sparta, Greece String APIKEY = "yourAPIkey"; #define ALTITUDE 216.0 // Altitude in Sparta, Greece

Ответ мы получим в формате JSON. Перед отправкой данных в библиотеку JSON, я вручную удалил некоторые символы, которые вызывали проблемы. После этого библиотека спокойно принимает данные, и мы можем сохранить их в переменные. После сохранения данных в переменные, всё, что нам нужно сделать — это отобразить их на дисплее и ждать, пока через час они не обновятся. Я отобразил на дисплее только прогноз погоды, но вы, при желании, можете вывести на него больше информации — всё сохраняется в переменные. Затем мы считываем информацию о температуре, влажности, давлении с датчика и также отправляем их на дисплей.

Чтобы обновить информацию на дисплее, мы просто отправляем команды на серийный порт:

Void showConnectingIcon() { Serial.println(); String command = "weatherIcon.pic=3"; Serial.print(command); endNextionCommand(); }

Интерфейс дисплея Nextion состоит из заднего фона, текстовых блоков и картинки, которая меняется в зависимости от погоды. Посмотрите руководство к дисплею, чтобы узнать больше о его возможностях. Вы можете быстро спроектировать свои интерфейс, если хотите, чтобы дисплей отображал больше данных.

Или вы можете просто использовать мой код, приложенный к этой инструкции.

Файлы

Шаг 7: Заключительные мысли и улучшения

Как вы видите, на сегодняшний день, искушенный человек может собрать своими руками удивительные вещи всего за несколько часов и написав всего несколько строчек кода. Проекты такого уровня были невообразимы даже два года назад.

Конечно, это только начало проекта. Я бы хотел добавить в него много улучшений, например графики, тачевую функциональность, может быть, заменил бы дисплей на другой, размером побольше. Также я бы напечатал на 3D принтере красивый корпус. Еще я бы спроектировал более интересный интерфейс и иконки. И у меня уже есть несколько свежих идей комнатных метеостанций, которые можно внедрить!

Изготовьте и установите на высоком шесте флюгер и расскажите детям, как определять направление ветра. Возьмите гладкую палку и вбейте в один из её концов длинный гвоздь. Вырежьте из плотного картона флажок и заламинируйте его, чтобы не промокал при дожде.

Край флажка оберните вокруг гвоздя так, чтобы он мог свободно вращаться при дуновении ветра. Сделайте из тонких проволочек стрелки, указывающие на юг, север, запад и восток и закрепите их на палке. Флюгер готов. Установите его на вашей метеоплощадке, сориентировав стрелки по сторонам света.

С детьми постарше (6–9 лет) изготовление флюгеров замечательно вписывается в уроки по географии, когда вы рассказываете, как образуются ветра, как использовали знания о них первые мореплаватели, что означают ветры на «конских широтах», что такое пассаты.

Моряки, зная о пассатах - устойчивых ветрах, дующих в тропических поясах, - называли их «торговыми ветрами», потому что с их помощью торговые корабли-парусники (тогда ещё не были изобретены двигатели) пересекали Атлантический океан. На парусниках везли товар из Европы в Америку.

Субтропические ветры между 30 и 38 параллелями южных и северных широт были настолько лёгкими, что парусники вставали в штиль. Приходилось месяцами ждать подходящего ветра. Часто ожидания затягивались на 3–5 месяцев. У моряков заканчивалась пресная вода и еда, и им приходилось питаться лошадьми, которых перевозили в больших количествах из Европы. Поэтому эти широты прозвали «конными».

Используя флюгер, дети отмечают в своих календариках наблюдения за погодой направление, силу и смену ветра. Таким образом мы не просто знакомим их с основными метеорологическими приборами, но и с методикой и техникой наблюдений и обработки результатов.

Термометр своими руками

Установите на метеоплощадке большой термометр и научите детей читать значения температур воздуха. Эта работа является также подготовкой для понимания концепции отрицательных чисел в математике, которая предлагается детям 9–12 лет в школе Монтессори.

Малыши 3–6 лет с удовольствием изготовят собственные термометры из картона и цветных ниток. Для этого:

  1. Посередине белой полоски картона шириной 4–6 см наносят шкалу термометра (выше и ниже нуля).
  2. Соединяют вместе красную и синюю (белую) нити.
  3. В верхнем и нижнем концах шкалы делают отверстия и пропускают через них концы ниток, связав их с обратной стороны.

Сверяясь с настоящим термометром, ребята двигают нить на своих самодельных градусниках, устанавливая и записывая значения температур в календарики погоды.

Гигрометр своими руками

Следующим прибором детской метеостанции является гигрометр - прибор для измерения влажности воздуха. Для его изготовления гигрометра понадобятся:

  • прямоугольный кусок деревянной дощечки или пенопласта;
  • две канцелярские кнопки;
  • скотч;
  • человеческий волос длиной около 10 см;
  • отрезок тонкой проволоки.

Укрепите на дощечке две кнопки на расстоянии примерно 8–10 см. К нижней прикрепите проволоку так, чтобы она могла приходить в движение, то есть нетуго. К верхней кнопке прикрепите кончик волоса, затем протяните его вокруг проволоки и закрепите на верхней кнопке. Прибор готов.

Расскажите детям, как человеческий волос реагирует на влажность воздуха, становясь короче или длиннее. При высокой влажности он удлинится, опустив таким образом стрелку вниз; при низкой влажности, наоборот, волос станет короче и поднимет проволочную стрелку вверх. Это свойство волоса и использовано для изготовления гигрометра.

Осадкомер своими руками

Дополнит вашу метеоплощадку осадкомер - прибор для измерения жидких и твёрдых осадков (града). Возьмите обычное ведро, установите его на небольшой возвышенности (тумбе, табурете). Накапливаемые осадки сливаются в мерный стакан со шкалой. Результаты дети заносят в свои календарики.

Метеостанция, построенная своими руками - это не только часть предметно-развивающей Монтессори-среды, но и увлекательная и познавательная возможность наблюдать за погодой и вести журнал наблюдений.

Обсуждая с детьми погоду, можно расширить тематику и рассказывать им о современных профессиях, зависящих от погодных условий. С детьми постарше (8–9 лет), в рамках Монтессори-программы по экономической географии, мы говорим о том, как климатические условия в целом влияют на экономику разных стран.